aws-glue-alpha-readme

@aws-cdk/aws-glue-alpha module

LanguagePackage
.NETAmazon.CDK.AWS.Glue.Alpha
Gogithub.com/aws/aws-cdk-go/awscdkgluealpha/v2
Javasoftware.amazon.awscdk.services.glue.alpha
Pythonaws_cdk.aws_glue_alpha
TypeScript@aws-cdk/aws-glue-alpha

AWS Glue Construct Library


cdk-constructs: Experimental

The APIs of higher level constructs in this module are experimental and under active development. They are subject to non-backward compatible changes or removal in any future version. These are not subject to the Semantic Versioning model and breaking changes will be announced in the release notes. This means that while you may use them, you may need to update your source code when upgrading to a newer version of this package.


This module is part of the AWS Cloud Development Kit project.

Job

A Job encapsulates a script that connects to data sources, processes them, and then writes output to a data target.

There are 3 types of jobs supported by AWS Glue: Spark ETL, Spark Streaming, and Python Shell jobs.

The glue.JobExecutable allows you to specify the type of job, the language to use and the code assets required by the job.

glue.Code allows you to refer to the different code assets required by the job, either from an existing S3 location or from a local file path.

glue.ExecutionClass allows you to specify FLEX or STANDARD. FLEX is appropriate for non-urgent jobs such as pre-production jobs, testing, and one-time data loads.

Spark Jobs

These jobs run in an Apache Spark environment managed by AWS Glue.

ETL Jobs

An ETL job processes data in batches using Apache Spark.

declare const bucket: s3.Bucket;
new glue.Job(this, 'ScalaSparkEtlJob', {
  executable: glue.JobExecutable.scalaEtl({
    glueVersion: glue.GlueVersion.V4_0,
    script: glue.Code.fromBucket(bucket, 'src/com/example/HelloWorld.scala'),
    className: 'com.example.HelloWorld',
    extraJars: [glue.Code.fromBucket(bucket, 'jars/HelloWorld.jar')],
  }),
  workerType: glue.WorkerType.G_8X,
  description: 'an example Scala ETL job',
});

Example not in your language?

Streaming Jobs

A Streaming job is similar to an ETL job, except that it performs ETL on data streams. It uses the Apache Spark Structured Streaming framework. Some Spark job features are not available to streaming ETL jobs.

new glue.Job(this, 'PythonSparkStreamingJob', {
  executable: glue.JobExecutable.pythonStreaming({
    glueVersion: glue.GlueVersion.V4_0,
    pythonVersion: glue.PythonVersion.THREE,
    script: glue.Code.fromAsset(path.join(__dirname, 'job-script/hello_world.py')),
  }),
  description: 'an example Python Streaming job',
});

Example not in your language?

Python Shell Jobs

A Python shell job runs Python scripts as a shell and supports a Python version that depends on the AWS Glue version you are using. This can be used to schedule and run tasks that don't require an Apache Spark environment. Currently, three flavors are supported:

  • PythonVersion.TWO (2.7; EOL)
  • PythonVersion.THREE (3.6)
  • PythonVersion.THREE_NINE (3.9)
declare const bucket: s3.Bucket;
new glue.Job(this, 'PythonShellJob', {
  executable: glue.JobExecutable.pythonShell({
    glueVersion: glue.GlueVersion.V1_0,
    pythonVersion: glue.PythonVersion.THREE,
    script: glue.Code.fromBucket(bucket, 'script.py'),
  }),
  description: 'an example Python Shell job',
});

Example not in your language?

Ray Jobs

These jobs run in a Ray environment managed by AWS Glue.

new glue.Job(this, 'RayJob', {
  executable: glue.JobExecutable.pythonRay({
    glueVersion: glue.GlueVersion.V4_0,
    pythonVersion: glue.PythonVersion.THREE_NINE,
    runtime: glue.Runtime.RAY_TWO_FOUR,
    script: glue.Code.fromAsset(path.join(__dirname, 'job-script/hello_world.py')),
  }),
  workerType: glue.WorkerType.Z_2X,
  workerCount: 2,
  description: 'an example Ray job'
});

Example not in your language?

See documentation for more information on adding jobs in Glue.

Connection

A Connection allows Glue jobs, crawlers and development endpoints to access certain types of data stores. For example, to create a network connection to connect to a data source within a VPC:

declare const securityGroup: ec2.SecurityGroup;
declare const subnet: ec2.Subnet;
new glue.Connection(this, 'MyConnection', {
  type: glue.ConnectionType.NETWORK,
  // The security groups granting AWS Glue inbound access to the data source within the VPC
  securityGroups: [securityGroup],
  // The VPC subnet which contains the data source
  subnet,
});

Example not in your language?

For RDS Connection by JDBC, it is recommended to manage credentials using AWS Secrets Manager. To use Secret, specify SECRET_ID in properties like the following code. Note that in this case, the subnet must have a route to the AWS Secrets Manager VPC endpoint or to the AWS Secrets Manager endpoint through a NAT gateway.

declare const securityGroup: ec2.SecurityGroup;
declare const subnet: ec2.Subnet;
declare const db: rds.DatabaseCluster;
new glue.Connection(this, "RdsConnection", {
  type: glue.ConnectionType.JDBC,
  securityGroups: [securityGroup],
  subnet,
  properties: {
    JDBC_CONNECTION_URL: `jdbc:mysql://${db.clusterEndpoint.socketAddress}/databasename`,
    JDBC_ENFORCE_SSL: "false",
    SECRET_ID: db.secret!.secretName,
  },
});

Example not in your language?

If you need to use a connection type that doesn't exist as a static member on ConnectionType, you can instantiate a ConnectionType object, e.g: new glue.ConnectionType('NEW_TYPE').

See Adding a Connection to Your Data Store and Connection Structure documentation for more information on the supported data stores and their configurations.

SecurityConfiguration

A SecurityConfiguration is a set of security properties that can be used by AWS Glue to encrypt data at rest.

new glue.SecurityConfiguration(this, 'MySecurityConfiguration', {
  cloudWatchEncryption: {
    mode: glue.CloudWatchEncryptionMode.KMS,
  },
  jobBookmarksEncryption: {
    mode: glue.JobBookmarksEncryptionMode.CLIENT_SIDE_KMS,
  },
  s3Encryption: {
    mode: glue.S3EncryptionMode.KMS,
  },
});

Example not in your language?

By default, a shared KMS key is created for use with the encryption configurations that require one. You can also supply your own key for each encryption config, for example, for CloudWatch encryption:

declare const key: kms.Key;
new glue.SecurityConfiguration(this, 'MySecurityConfiguration', {
  cloudWatchEncryption: {
    mode: glue.CloudWatchEncryptionMode.KMS,
    kmsKey: key,
  },
});

Example not in your language?

See documentation for more info for Glue encrypting data written by Crawlers, Jobs, and Development Endpoints.

Database

A Database is a logical grouping of Tables in the Glue Catalog.

new glue.Database(this, 'MyDatabase');

Example not in your language?

Table

A Glue table describes a table of data in S3: its structure (column names and types), location of data (S3 objects with a common prefix in a S3 bucket), and format for the files (Json, Avro, Parquet, etc.):

declare const myDatabase: glue.Database;
new glue.Table(this, 'MyTable', {
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }, {
    name: 'col2',
    type: glue.Schema.array(glue.Schema.STRING),
    comment: 'col2 is an array of strings' // comment is optional
  }],
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

By default, a S3 bucket will be created to store the table's data but you can manually pass the bucket and s3Prefix:

declare const myBucket: s3.Bucket;
declare const myDatabase: glue.Database;
new glue.Table(this, 'MyTable', {
  bucket: myBucket,
  s3Prefix: 'my-table/',
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

By default, an S3 bucket will be created to store the table's data and stored in the bucket root. You can also manually pass the bucket and s3Prefix:

Partition Keys

To improve query performance, a table can specify partitionKeys on which data is stored and queried separately. For example, you might partition a table by year and month to optimize queries based on a time window:

declare const myDatabase: glue.Database;
new glue.Table(this, 'MyTable', {
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  partitionKeys: [{
    name: 'year',
    type: glue.Schema.SMALL_INT,
  }, {
    name: 'month',
    type: glue.Schema.SMALL_INT,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

Partition Indexes

Another way to improve query performance is to specify partition indexes. If no partition indexes are present on the table, AWS Glue loads all partitions of the table and filters the loaded partitions using the query expression. The query takes more time to run as the number of partitions increase. With an index, the query will try to fetch a subset of the partitions instead of loading all partitions of the table.

The keys of a partition index must be a subset of the partition keys of the table. You can have a maximum of 3 partition indexes per table. To specify a partition index, you can use the partitionIndexes property:

declare const myDatabase: glue.Database;
new glue.Table(this, 'MyTable', {
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  partitionKeys: [{
    name: 'year',
    type: glue.Schema.SMALL_INT,
  }, {
    name: 'month',
    type: glue.Schema.SMALL_INT,
  }],
  partitionIndexes: [{
    indexName: 'my-index', // optional
    keyNames: ['year'],
  }], // supply up to 3 indexes
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

Alternatively, you can call the addPartitionIndex() function on a table:

declare const myTable: glue.Table;
myTable.addPartitionIndex({
  indexName: 'my-index',
  keyNames: ['year'],
});

Example not in your language?

Partition Filtering

If you have a table with a large number of partitions that grows over time, consider using AWS Glue partition indexing and filtering.

declare const myDatabase: glue.Database;
new glue.Table(this, 'MyTable', {
    database: myDatabase,
    columns: [{
        name: 'col1',
        type: glue.Schema.STRING,
    }],
    partitionKeys: [{
        name: 'year',
        type: glue.Schema.SMALL_INT,
    }, {
        name: 'month',
        type: glue.Schema.SMALL_INT,
    }],
    dataFormat: glue.DataFormat.JSON,
    enablePartitionFiltering: true,
});

Example not in your language?

Encryption

You can enable encryption on a Table's data:

  • S3Managed - (default) Server side encryption (SSE-S3) with an Amazon S3-managed key.
declare const myDatabase: glue.Database;
new glue.Table(this, 'MyTable', {
  encryption: glue.TableEncryption.S3_MANAGED,
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

  • Kms - Server-side encryption (SSE-KMS) with an AWS KMS Key managed by the account owner.
declare const myDatabase: glue.Database;
// KMS key is created automatically
new glue.Table(this, 'MyTable', {
  encryption: glue.TableEncryption.KMS,
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

// with an explicit KMS key
new glue.Table(this, 'MyTable', {
  encryption: glue.TableEncryption.KMS,
  encryptionKey: new kms.Key(this, 'MyKey'),
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

  • KmsManaged - Server-side encryption (SSE-KMS), like Kms, except with an AWS KMS Key managed by the AWS Key Management Service.
declare const myDatabase: glue.Database;
new glue.Table(this, 'MyTable', {
  encryption: glue.TableEncryption.KMS_MANAGED,
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

  • ClientSideKms - Client-side encryption (CSE-KMS) with an AWS KMS Key managed by the account owner.
declare const myDatabase: glue.Database;
// KMS key is created automatically
new glue.Table(this, 'MyTable', {
  encryption: glue.TableEncryption.CLIENT_SIDE_KMS,
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

// with an explicit KMS key
new glue.Table(this, 'MyTable', {
  encryption: glue.TableEncryption.CLIENT_SIDE_KMS,
  encryptionKey: new kms.Key(this, 'MyKey'),
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

Note: you cannot provide a Bucket when creating the Table if you wish to use server-side encryption (KMS, KMS_MANAGED or S3_MANAGED).

Types

A table's schema is a collection of columns, each of which have a name and a type. Types are recursive structures, consisting of primitive and complex types:

declare const myDatabase: glue.Database;
new glue.Table(this, 'MyTable', {
  columns: [{
    name: 'primitive_column',
    type: glue.Schema.STRING,
  }, {
    name: 'array_column',
    type: glue.Schema.array(glue.Schema.INTEGER),
    comment: 'array<integer>',
  }, {
    name: 'map_column',
    type: glue.Schema.map(
      glue.Schema.STRING,
      glue.Schema.TIMESTAMP),
    comment: 'map<string,string>',
  }, {
    name: 'struct_column',
    type: glue.Schema.struct([{
      name: 'nested_column',
      type: glue.Schema.DATE,
      comment: 'nested comment',
    }]),
    comment: "struct<nested_column:date COMMENT 'nested comment'>",
  }],
  // ...
  database: myDatabase,
  dataFormat: glue.DataFormat.JSON,
});

Example not in your language?

Primitives

Numeric

NameTypeComments
FLOATConstantA 32-bit single-precision floating point number
INTEGERConstantA 32-bit signed value in two's complement format, with a minimum value of -2^31 and a maximum value of 2^31-1
DOUBLEConstantA 64-bit double-precision floating point number
BIG_INTConstantA 64-bit signed INTEGER in two’s complement format, with a minimum value of -2^63 and a maximum value of 2^63 -1
SMALL_INTConstantA 16-bit signed INTEGER in two’s complement format, with a minimum value of -2^15 and a maximum value of 2^15-1
TINY_INTConstantA 8-bit signed INTEGER in two’s complement format, with a minimum value of -2^7 and a maximum value of 2^7-1

Date and time

NameTypeComments
DATEConstantA date in UNIX format, such as YYYY-MM-DD.
TIMESTAMPConstantDate and time instant in the UNiX format, such as yyyy-mm-dd hh:mm:ss[.f...]. For example, TIMESTAMP '2008-09-15 03:04:05.324'. This format uses the session time zone.

String

NameTypeComments
STRINGConstantA string literal enclosed in single or double quotes
decimal(precision: number, scale?: number)Functionprecision is the total number of digits. scale (optional) is the number of digits in fractional part with a default of 0. For example, use these type definitions: decimal(11,5), decimal(15)
char(length: number)FunctionFixed length character data, with a specified length between 1 and 255, such as char(10)
varchar(length: number)FunctionVariable length character data, with a specified length between 1 and 65535, such as varchar(10)

Miscellaneous

NameTypeComments
BOOLEANConstantValues are true and false
BINARYConstantValue is in binary

Complex

NameTypeComments
array(itemType: Type)FunctionAn array of some other type
map(keyType: Type, valueType: Type)FunctionA map of some primitive key type to any value type
struct(collumns: Column[])FunctionNested structure containing individually named and typed collumns