aws-cdk-lib.aws_stepfunctions_tasks.SageMakerCreateTrainingJobProps

interface SageMakerCreateTrainingJobProps

LanguageType name
.NETAmazon.CDK.AWS.StepFunctions.Tasks.SageMakerCreateTrainingJobProps
Gogithub.com/aws/aws-cdk-go/awscdk/v2/awsstepfunctionstasks#SageMakerCreateTrainingJobProps
Javasoftware.amazon.awscdk.services.stepfunctions.tasks.SageMakerCreateTrainingJobProps
Pythonaws_cdk.aws_stepfunctions_tasks.SageMakerCreateTrainingJobProps
TypeScript (source)aws-cdk-lib » aws_stepfunctions_tasks » SageMakerCreateTrainingJobProps

Properties for creating an Amazon SageMaker training job.

Example

new tasks.SageMakerCreateTrainingJob(this, 'TrainSagemaker', {
  trainingJobName: sfn.JsonPath.stringAt('$.JobName'),
  algorithmSpecification: {
    algorithmName: 'BlazingText',
    trainingInputMode: tasks.InputMode.FILE,
  },
  inputDataConfig: [{
    channelName: 'train',
    dataSource: {
      s3DataSource: {
        s3DataType: tasks.S3DataType.S3_PREFIX,
        s3Location: tasks.S3Location.fromJsonExpression('$.S3Bucket'),
      },
    },
  }],
  outputDataConfig: {
    s3OutputLocation: tasks.S3Location.fromBucket(s3.Bucket.fromBucketName(this, 'Bucket', 'mybucket'), 'myoutputpath'),
  },
  resourceConfig: {
    instanceCount: 1,
    instanceType: new ec2.InstanceType(sfn.JsonPath.stringAt('$.InstanceType')),
    volumeSize: Size.gibibytes(50),
  }, // optional: default is 1 instance of EC2 `M4.XLarge` with `10GB` volume
  stoppingCondition: {
    maxRuntime: Duration.hours(2),
  }, // optional: default is 1 hour
});

Properties

NameTypeDescription
algorithmSpecificationAlgorithmSpecificationIdentifies the training algorithm to use.
inputDataConfigChannel[]Describes the various datasets (e.g. train, validation, test) and the Amazon S3 location where stored.
outputDataConfigOutputDataConfigIdentifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training.
trainingJobNamestringTraining Job Name.
comment?stringAn optional description for this state.
credentials?CredentialsCredentials for an IAM Role that the State Machine assumes for executing the task.
enableNetworkIsolation?booleanIsolates the training container.
environment?{ [string]: string }Environment variables to set in the Docker container.
heartbeat?⚠️DurationTimeout for the heartbeat.
heartbeatTimeout?TimeoutTimeout for the heartbeat.
hyperparameters?{ [string]: any }Algorithm-specific parameters that influence the quality of the model.
inputPath?stringJSONPath expression to select part of the state to be the input to this state.
integrationPattern?IntegrationPatternAWS Step Functions integrates with services directly in the Amazon States Language.
outputPath?stringJSONPath expression to select select a portion of the state output to pass to the next state.
resourceConfig?ResourceConfigSpecifies the resources, ML compute instances, and ML storage volumes to deploy for model training.
resultPath?stringJSONPath expression to indicate where to inject the state's output.
resultSelector?{ [string]: any }The JSON that will replace the state's raw result and become the effective result before ResultPath is applied.
role?IRoleRole for the Training Job.
stoppingCondition?StoppingConditionSets a time limit for training.
tags?{ [string]: string }Tags to be applied to the train job.
taskTimeout?TimeoutTimeout for the task.
timeout?⚠️DurationTimeout for the task.
vpcConfig?VpcConfigSpecifies the VPC that you want your training job to connect to.

algorithmSpecification

Type: AlgorithmSpecification

Identifies the training algorithm to use.


inputDataConfig

Type: Channel[]

Describes the various datasets (e.g. train, validation, test) and the Amazon S3 location where stored.


outputDataConfig

Type: OutputDataConfig

Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training.


trainingJobName

Type: string

Training Job Name.


comment?

Type: string (optional, default: No comment)

An optional description for this state.


credentials?

Type: Credentials (optional, default: None (Task is executed using the State Machine's execution role))

Credentials for an IAM Role that the State Machine assumes for executing the task.

This enables cross-account resource invocations.

See also: https://docs.aws.amazon.com/step-functions/latest/dg/concepts-access-cross-acct-resources.html


enableNetworkIsolation?

Type: boolean (optional, default: false)

Isolates the training container.

No inbound or outbound network calls can be made to or from the training container.


environment?

Type: { [string]: string } (optional, default: No environment variables)

Environment variables to set in the Docker container.


heartbeat?⚠️

⚠️ Deprecated: use heartbeatTimeout

Type: Duration (optional, default: None)

Timeout for the heartbeat.


heartbeatTimeout?

Type: Timeout (optional, default: None)

Timeout for the heartbeat.

[disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface


hyperparameters?

Type: { [string]: any } (optional, default: No hyperparameters)

Algorithm-specific parameters that influence the quality of the model.

Set hyperparameters before you start the learning process. For a list of hyperparameters provided by Amazon SageMaker

See also: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html


inputPath?

Type: string (optional, default: The entire task input (JSON path '$'))

JSONPath expression to select part of the state to be the input to this state.

May also be the special value JsonPath.DISCARD, which will cause the effective input to be the empty object {}.


integrationPattern?

Type: IntegrationPattern (optional, default: IntegrationPattern.REQUEST_RESPONSE for most tasks. IntegrationPattern.RUN_JOB for the following exceptions: BatchSubmitJob, EmrAddStep, EmrCreateCluster, EmrTerminationCluster, and EmrContainersStartJobRun.)

AWS Step Functions integrates with services directly in the Amazon States Language.

You can control these AWS services using service integration patterns

See also: https://docs.aws.amazon.com/step-functions/latest/dg/connect-to-resource.html#connect-wait-token


outputPath?

Type: string (optional, default: The entire JSON node determined by the state input, the task result, and resultPath is passed to the next state (JSON path '$'))

JSONPath expression to select select a portion of the state output to pass to the next state.

May also be the special value JsonPath.DISCARD, which will cause the effective output to be the empty object {}.


resourceConfig?

Type: ResourceConfig (optional, default: 1 instance of EC2 M4.XLarge with 10GB volume)

Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training.


resultPath?

Type: string (optional, default: Replaces the entire input with the result (JSON path '$'))

JSONPath expression to indicate where to inject the state's output.

May also be the special value JsonPath.DISCARD, which will cause the state's input to become its output.


resultSelector?

Type: { [string]: any } (optional, default: None)

The JSON that will replace the state's raw result and become the effective result before ResultPath is applied.

You can use ResultSelector to create a payload with values that are static or selected from the state's raw result.

See also: https://docs.aws.amazon.com/step-functions/latest/dg/input-output-inputpath-params.html#input-output-resultselector


role?

Type: IRole (optional, default: a role will be created.)

Role for the Training Job.

The role must be granted all necessary permissions for the SageMaker training job to be able to operate.

See https://docs.aws.amazon.com/fr_fr/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms


stoppingCondition?

Type: StoppingCondition (optional, default: max runtime of 1 hour)

Sets a time limit for training.


tags?

Type: { [string]: string } (optional, default: No tags)

Tags to be applied to the train job.


taskTimeout?

Type: Timeout (optional, default: None)

Timeout for the task.

[disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface


timeout?⚠️

⚠️ Deprecated: use taskTimeout

Type: Duration (optional, default: None)

Timeout for the task.


vpcConfig?

Type: VpcConfig (optional, default: No VPC)

Specifies the VPC that you want your training job to connect to.