aws-cdk-lib.aws_sagemaker.CfnModelPackage.ModelPackageContainerDefinitionProperty

interface ModelPackageContainerDefinitionProperty

LanguageType name
.NETAmazon.CDK.AWS.Sagemaker.CfnModelPackage.ModelPackageContainerDefinitionProperty
Gogithub.com/aws/aws-cdk-go/awscdk/v2/awssagemaker#CfnModelPackage_ModelPackageContainerDefinitionProperty
Javasoftware.amazon.awscdk.services.sagemaker.CfnModelPackage.ModelPackageContainerDefinitionProperty
Pythonaws_cdk.aws_sagemaker.CfnModelPackage.ModelPackageContainerDefinitionProperty
TypeScript aws-cdk-lib » aws_sagemaker » CfnModelPackage » ModelPackageContainerDefinitionProperty

Describes the Docker container for the model package.

Example

// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
import { aws_sagemaker as sagemaker } from 'aws-cdk-lib';

declare const modelInput: any;
const modelPackageContainerDefinitionProperty: sagemaker.CfnModelPackage.ModelPackageContainerDefinitionProperty = {
  image: 'image',

  // the properties below are optional
  containerHostname: 'containerHostname',
  environment: {
    environmentKey: 'environment',
  },
  framework: 'framework',
  frameworkVersion: 'frameworkVersion',
  imageDigest: 'imageDigest',
  modelDataUrl: 'modelDataUrl',
  modelInput: modelInput,
  nearestModelName: 'nearestModelName',
};

Properties

NameTypeDescription
imagestringThe Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
containerHostname?stringThe DNS host name for the Docker container.
environment?IResolvable | { [string]: string }The environment variables to set in the Docker container.
framework?stringThe machine learning framework of the model package container image.
frameworkVersion?stringThe framework version of the Model Package Container Image.
imageDigest?stringAn MD5 hash of the training algorithm that identifies the Docker image used for training.
modelDataUrl?stringThe Amazon S3 path where the model artifacts, which result from model training, are stored.
modelInput?anyA structure with Model Input details.
nearestModelName?stringThe name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model.

image

Type: string

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker .


containerHostname?

Type: string (optional)

The DNS host name for the Docker container.


environment?

Type: IResolvable | { [string]: string } (optional)

The environment variables to set in the Docker container.

Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.


framework?

Type: string (optional)

The machine learning framework of the model package container image.


frameworkVersion?

Type: string (optional)

The framework version of the Model Package Container Image.


imageDigest?

Type: string (optional)

An MD5 hash of the training algorithm that identifies the Docker image used for training.


modelDataUrl?

Type: string (optional)

The Amazon S3 path where the model artifacts, which result from model training, are stored.

This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

The model artifacts must be in an S3 bucket that is in the same region as the model package.


modelInput?

Type: any (optional)

A structure with Model Input details.


nearestModelName?

Type: string (optional)

The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model.

You can find a list of benchmarked models by calling ListModelMetadata .