aws-cdk-lib.aws_sagemaker.CfnModelQualityJobDefinition.ModelQualityAppSpecificationProperty

interface ModelQualityAppSpecificationProperty

LanguageType name
.NETAmazon.CDK.AWS.Sagemaker.CfnModelQualityJobDefinition.ModelQualityAppSpecificationProperty
Gogithub.com/aws/aws-cdk-go/awscdk/v2/awssagemaker#CfnModelQualityJobDefinition_ModelQualityAppSpecificationProperty
Javasoftware.amazon.awscdk.services.sagemaker.CfnModelQualityJobDefinition.ModelQualityAppSpecificationProperty
Pythonaws_cdk.aws_sagemaker.CfnModelQualityJobDefinition.ModelQualityAppSpecificationProperty
TypeScript aws-cdk-lib » aws_sagemaker » CfnModelQualityJobDefinition » ModelQualityAppSpecificationProperty

Container image configuration object for the monitoring job.

Example

// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
import { aws_sagemaker as sagemaker } from 'aws-cdk-lib';
const modelQualityAppSpecificationProperty: sagemaker.CfnModelQualityJobDefinition.ModelQualityAppSpecificationProperty = {
  imageUri: 'imageUri',
  problemType: 'problemType',

  // the properties below are optional
  containerArguments: ['containerArguments'],
  containerEntrypoint: ['containerEntrypoint'],
  environment: {
    environmentKey: 'environment',
  },
  postAnalyticsProcessorSourceUri: 'postAnalyticsProcessorSourceUri',
  recordPreprocessorSourceUri: 'recordPreprocessorSourceUri',
};

Properties

NameTypeDescription
imageUristringThe address of the container image that the monitoring job runs.
problemTypestringThe machine learning problem type of the model that the monitoring job monitors.
containerArguments?string[]An array of arguments for the container used to run the monitoring job.
containerEntrypoint?string[]Specifies the entrypoint for a container that the monitoring job runs.
environment?IResolvable | { [string]: string }Sets the environment variables in the container that the monitoring job runs.
postAnalyticsProcessorSourceUri?stringAn Amazon S3 URI to a script that is called after analysis has been performed.
recordPreprocessorSourceUri?stringAn Amazon S3 URI to a script that is called per row prior to running analysis.

imageUri

Type: string

The address of the container image that the monitoring job runs.


problemType

Type: string

The machine learning problem type of the model that the monitoring job monitors.


containerArguments?

Type: string[] (optional)

An array of arguments for the container used to run the monitoring job.


containerEntrypoint?

Type: string[] (optional)

Specifies the entrypoint for a container that the monitoring job runs.


environment?

Type: IResolvable | { [string]: string } (optional)

Sets the environment variables in the container that the monitoring job runs.


postAnalyticsProcessorSourceUri?

Type: string (optional)

An Amazon S3 URI to a script that is called after analysis has been performed.

Applicable only for the built-in (first party) containers.


recordPreprocessorSourceUri?

Type: string (optional)

An Amazon S3 URI to a script that is called per row prior to running analysis.

It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.