The workspaces/datasets resource type can be deployed with operations that target:
For a list of changed properties in each API version, see change log.
To create a Microsoft.MachineLearningServices/workspaces/datasets resource, add the following JSON to your template.
{
"type": "Microsoft.MachineLearningServices/workspaces/datasets",
"apiVersion": "2020-05-01-preview",
"name": "string",
"datasetType": "string",
"parameters": {
"header": "string",
"includePath": "bool",
"partitionFormat": "string",
"path": {
"dataPath": {
"datastoreName": "string",
"relativePath": "string"
},
"httpUrl": "string"
},
"query": {
"datastoreName": "string",
"query": "string"
},
"separator": "string",
"sourceType": "string"
},
"registration": {
"description": "string",
"name": "string",
"tags": {
"{customized property}": "string"
}
},
"skipValidation": "bool",
"timeSeries": {
"coarseGrainTimestamp": "string",
"fineGrainTimestamp": "string"
}
}
Name | Description | Value |
---|---|---|
type | The resource type | 'Microsoft.MachineLearningServices/workspaces/datasets' |
apiVersion | The resource api version | '2020-05-01-preview' |
name | The resource name See how to set names and types for child resources in JSON ARM templates. |
string (required) |
datasetType | Specifies dataset type. | 'file' 'tabular' (required) |
parameters | DatasetCreateRequestParameters (required) | |
registration | DatasetCreateRequestRegistration (required) | |
skipValidation | Skip validation that ensures data can be loaded from the dataset before registration. | bool |
timeSeries | DatasetCreateRequestTimeSeries |
Name | Description | Value |
---|---|---|
header | Header type. | 'all_files_have_same_headers' 'combine_all_files_headers' 'no_headers' 'only_first_file_has_headers' |
includePath | Boolean to keep path information as column in the dataset. Defaults to False. This is useful when reading multiple files, and want to know which file a particular record originated from, or to keep useful information in file path. | bool |
partitionFormat | The partition information of each path will be extracted into columns based on the specified format. Format part '{column_name}' creates string column, and '{column_name:yyyy/MM/dd/HH/mm/ss}' creates datetime column, where 'yyyy', 'MM', 'dd', 'HH', 'mm' and 'ss' are used to extract year, month, day, hour, minute and second for the datetime type. The format should start from the position of first partition key until the end of file path. For example, given the path '../USA/2019/01/01/data.parquet' where the partition is by country/region and time, partition_format='/{CountryOrRegion}/{PartitionDate:yyyy/MM/dd}/data.csv' creates a string column 'CountryOrRegion' with the value 'USA' and a datetime column 'PartitionDate' with the value '2019-01-01 | string |
path | DatasetCreateRequestParametersPath | |
query | DatasetCreateRequestParametersQuery | |
separator | The separator used to split columns for 'delimited_files' sourceType. | string |
sourceType | Data source type. | 'delimited_files' 'json_lines_files' 'parquet_files' |
Name | Description | Value |
---|---|---|
dataPath | DatasetCreateRequestParametersPathDataPath | |
httpUrl | The Http URL. | string |
Name | Description | Value |
---|---|---|
datastoreName | The datastore name. | string |
relativePath | Path within the datastore. | string |
Name | Description | Value |
---|---|---|
datastoreName | The SQL/PostgreSQL/MySQL datastore name. | string |
query | SQL Quey. | string |
Name | Description | Value |
---|---|---|
description | The description for the dataset. | string |
name | The name of the dataset. | string |
tags | Tags associated with the dataset. | object |
Name | Description | Value |
---|---|---|
coarseGrainTimestamp | Column name to be used as CoarseGrainTimestamp. Can only be used if 'fineGrainTimestamp' is specified and cannot be same as 'fineGrainTimestamp'. | string |
fineGrainTimestamp | Column name to be used as FineGrainTimestamp | string |
The following quickstart templates deploy this resource type.
Template | Description |
---|---|
Create File Dataset from Relative Path in Datastore |
This template creates a file dataset from relative path in datastore in Azure Machine Learning workspace. |
Create File Dataset in AML workspace from Web URL |
This template creates a file dataset from Web URL in Azure Machine Learning workspace. |
Create Tabular Dataset from Relative Path in Datastore |
This template creates a tabular dataset from relative path in datastore in Azure Machine Learning workspace. |
Create Tabular Dataset from SQL/PostgreSQL/MySQL Datastore |
This template creates a tabular dataset from SQL query in SQL/PostgreSQL/MySQL datastore in Azure Machine Learning workspace. |
Create Tabular Dataset in AML workspace from Web URL |
This template creates a tabular dataset from Web URL in Azure Machine Learning workspace. |
Create AML workspace with multiple Datasets & Datastores |
This template creates Azure Machine Learning workspace with multiple datasets & datastores. |