/*global define*/
define([
'../ThirdParty/earcut-2.1.1',
'./Cartesian2',
'./Cartesian3',
'./ComponentDatatype',
'./defaultValue',
'./defined',
'./DeveloperError',
'./Ellipsoid',
'./EllipsoidTangentPlane',
'./Geometry',
'./GeometryAttribute',
'./Math',
'./pointInsideTriangle',
'./PrimitiveType',
'./Queue',
'./WindingOrder'
], function(
earcut,
Cartesian2,
Cartesian3,
ComponentDatatype,
defaultValue,
defined,
DeveloperError,
Ellipsoid,
EllipsoidTangentPlane,
Geometry,
GeometryAttribute,
CesiumMath,
pointInsideTriangle,
PrimitiveType,
Queue,
WindingOrder) {
'use strict';
var scaleToGeodeticHeightN = new Cartesian3();
var scaleToGeodeticHeightP = new Cartesian3();
/**
* @private
*/
var PolygonPipeline = {};
/**
* @exception {DeveloperError} At least three positions are required.
*/
PolygonPipeline.computeArea2D = function(positions) {
//>>includeStart('debug', pragmas.debug);
if (!defined(positions)) {
throw new DeveloperError('positions is required.');
}
if (positions.length < 3) {
throw new DeveloperError('At least three positions are required.');
}
//>>includeEnd('debug');
var length = positions.length;
var area = 0.0;
for ( var i0 = length - 1, i1 = 0; i1 < length; i0 = i1++) {
var v0 = positions[i0];
var v1 = positions[i1];
area += (v0.x * v1.y) - (v1.x * v0.y);
}
return area * 0.5;
};
/**
* @returns {WindingOrder} The winding order.
*
* @exception {DeveloperError} At least three positions are required.
*/
PolygonPipeline.computeWindingOrder2D = function(positions) {
var area = PolygonPipeline.computeArea2D(positions);
return (area > 0.0) ? WindingOrder.COUNTER_CLOCKWISE : WindingOrder.CLOCKWISE;
};
/**
* Triangulate a polygon.
*
* @param {Cartesian2[]} positions Cartesian2 array containing the vertices of the polygon
* @param {Number[]} [holes] An array of the staring indices of the holes.
* @returns {Number[]} Index array representing triangles that fill the polygon
*/
PolygonPipeline.triangulate = function(positions, holes) {
//>>includeStart('debug', pragmas.debug);
if (!defined(positions)) {
throw new DeveloperError('positions is required.');
}
//>>includeEnd('debug');
var flattenedPositions = Cartesian2.packArray(positions);
return earcut(flattenedPositions, holes, 2);
};
var subdivisionV0Scratch = new Cartesian3();
var subdivisionV1Scratch = new Cartesian3();
var subdivisionV2Scratch = new Cartesian3();
var subdivisionS0Scratch = new Cartesian3();
var subdivisionS1Scratch = new Cartesian3();
var subdivisionS2Scratch = new Cartesian3();
var subdivisionMidScratch = new Cartesian3();
/**
* Subdivides positions and raises points to the surface of the ellipsoid.
*
* @param {Ellipsoid} ellipsoid The ellipsoid the polygon in on.
* @param {Cartesian3[]} positions An array of {@link Cartesian3} positions of the polygon.
* @param {Number[]} indices An array of indices that determines the triangles in the polygon.
* @param {Number} [granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
*
* @exception {DeveloperError} At least three indices are required.
* @exception {DeveloperError} The number of indices must be divisable by three.
* @exception {DeveloperError} Granularity must be greater than zero.
*/
PolygonPipeline.computeSubdivision = function(ellipsoid, positions, indices, granularity) {
granularity = defaultValue(granularity, CesiumMath.RADIANS_PER_DEGREE);
//>>includeStart('debug', pragmas.debug);
if (!defined(ellipsoid)) {
throw new DeveloperError('ellipsoid is required.');
}
if (!defined(positions)) {
throw new DeveloperError('positions is required.');
}
if (!defined(indices)) {
throw new DeveloperError('indices is required.');
}
if (indices.length < 3) {
throw new DeveloperError('At least three indices are required.');
}
if (indices.length % 3 !== 0) {
throw new DeveloperError('The number of indices must be divisable by three.');
}
if (granularity <= 0.0) {
throw new DeveloperError('granularity must be greater than zero.');
}
//>>includeEnd('debug');
// triangles that need (or might need) to be subdivided.
var triangles = indices.slice(0);
// New positions due to edge splits are appended to the positions list.
var i;
var length = positions.length;
var subdividedPositions = new Array(length * 3);
var q = 0;
for (i = 0; i < length; i++) {
var item = positions[i];
subdividedPositions[q++] = item.x;
subdividedPositions[q++] = item.y;
subdividedPositions[q++] = item.z;
}
var subdividedIndices = [];
// Used to make sure shared edges are not split more than once.
var edges = {};
var radius = ellipsoid.maximumRadius;
var minDistance = CesiumMath.chordLength(granularity, radius);
var minDistanceSqrd = minDistance * minDistance;
while (triangles.length > 0) {
var i2 = triangles.pop();
var i1 = triangles.pop();
var i0 = triangles.pop();
var v0 = Cartesian3.fromArray(subdividedPositions, i0 * 3, subdivisionV0Scratch);
var v1 = Cartesian3.fromArray(subdividedPositions, i1 * 3, subdivisionV1Scratch);
var v2 = Cartesian3.fromArray(subdividedPositions, i2 * 3, subdivisionV2Scratch);
var s0 = Cartesian3.multiplyByScalar(Cartesian3.normalize(v0, subdivisionS0Scratch), radius, subdivisionS0Scratch);
var s1 = Cartesian3.multiplyByScalar(Cartesian3.normalize(v1, subdivisionS1Scratch), radius, subdivisionS1Scratch);
var s2 = Cartesian3.multiplyByScalar(Cartesian3.normalize(v2, subdivisionS2Scratch), radius, subdivisionS2Scratch);
var g0 = Cartesian3.magnitudeSquared(Cartesian3.subtract(s0, s1, subdivisionMidScratch));
var g1 = Cartesian3.magnitudeSquared(Cartesian3.subtract(s1, s2, subdivisionMidScratch));
var g2 = Cartesian3.magnitudeSquared(Cartesian3.subtract(s2, s0, subdivisionMidScratch));
var max = Math.max(g0, g1, g2);
var edge;
var mid;
// if the max length squared of a triangle edge is greater than the chord length of squared
// of the granularity, subdivide the triangle
if (max > minDistanceSqrd) {
if (g0 === max) {
edge = Math.min(i0, i1) + ' ' + Math.max(i0, i1);
i = edges[edge];
if (!defined(i)) {
mid = Cartesian3.add(v0, v1, subdivisionMidScratch);
Cartesian3.multiplyByScalar(mid, 0.5, mid);
subdividedPositions.push(mid.x, mid.y, mid.z);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i0, i, i2);
triangles.push(i, i1, i2);
} else if (g1 === max) {
edge = Math.min(i1, i2) + ' ' + Math.max(i1, i2);
i = edges[edge];
if (!defined(i)) {
mid = Cartesian3.add(v1, v2, subdivisionMidScratch);
Cartesian3.multiplyByScalar(mid, 0.5, mid);
subdividedPositions.push(mid.x, mid.y, mid.z);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i1, i, i0);
triangles.push(i, i2, i0);
} else if (g2 === max) {
edge = Math.min(i2, i0) + ' ' + Math.max(i2, i0);
i = edges[edge];
if (!defined(i)) {
mid = Cartesian3.add(v2, v0, subdivisionMidScratch);
Cartesian3.multiplyByScalar(mid, 0.5, mid);
subdividedPositions.push(mid.x, mid.y, mid.z);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i2, i, i1);
triangles.push(i, i0, i1);
}
} else {
subdividedIndices.push(i0);
subdividedIndices.push(i1);
subdividedIndices.push(i2);
}
}
return new Geometry({
attributes : {
position : new GeometryAttribute({
componentDatatype : ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : subdividedPositions
})
},
indices : subdividedIndices,
primitiveType : PrimitiveType.TRIANGLES
});
};
/**
* Scales each position of a geometry's position attribute to a height, in place.
*
* @param {Number[]} positions The array of numbers representing the positions to be scaled
* @param {Number} [height=0.0] The desired height to add to the positions
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
* @param {Boolean} [scaleToSurface=true] <code>true</code> if the positions need to be scaled to the surface before the height is added.
* @returns {Number[]} The input array of positions, scaled to height
*/
PolygonPipeline.scaleToGeodeticHeight = function(positions, height, ellipsoid, scaleToSurface) {
ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
var n = scaleToGeodeticHeightN;
var p = scaleToGeodeticHeightP;
height = defaultValue(height, 0.0);
scaleToSurface = defaultValue(scaleToSurface, true);
if (defined(positions)) {
var length = positions.length;
for ( var i = 0; i < length; i += 3) {
Cartesian3.fromArray(positions, i, p);
if (scaleToSurface) {
p = ellipsoid.scaleToGeodeticSurface(p, p);
}
if (height !== 0) {
n = ellipsoid.geodeticSurfaceNormal(p, n);
Cartesian3.multiplyByScalar(n, height, n);
Cartesian3.add(p, n, p);
}
positions[i] = p.x;
positions[i + 1] = p.y;
positions[i + 2] = p.z;
}
}
return positions;
};
return PolygonPipeline;
});