Source: Core/CubicRealPolynomial.js

/*global define*/
define([
        './DeveloperError',
        './QuadraticRealPolynomial'
    ], function(
        DeveloperError,
        QuadraticRealPolynomial) {
    'use strict';

    /**
     * Defines functions for 3rd order polynomial functions of one variable with only real coefficients.
     *
     * @exports CubicRealPolynomial
     */
    var CubicRealPolynomial = {};

    /**
     * Provides the discriminant of the cubic equation from the supplied coefficients.
     *
     * @param {Number} a The coefficient of the 3rd order monomial.
     * @param {Number} b The coefficient of the 2nd order monomial.
     * @param {Number} c The coefficient of the 1st order monomial.
     * @param {Number} d The coefficient of the 0th order monomial.
     * @returns {Number} The value of the discriminant.
     */
    CubicRealPolynomial.computeDiscriminant = function(a, b, c, d) {
        //>>includeStart('debug', pragmas.debug);
        if (typeof a !== 'number') {
            throw new DeveloperError('a is a required number.');
        }
        if (typeof b !== 'number') {
            throw new DeveloperError('b is a required number.');
        }
        if (typeof c !== 'number') {
            throw new DeveloperError('c is a required number.');
        }
        if (typeof d !== 'number') {
            throw new DeveloperError('d is a required number.');
        }
        //>>includeEnd('debug');

        var a2 = a * a;
        var b2 = b * b;
        var c2 = c * c;
        var d2 = d * d;

        var discriminant = 18.0 * a * b * c * d + b2 * c2 - 27.0 * a2 * d2 - 4.0 * (a * c2 * c + b2 * b * d);
        return discriminant;
    };

    function computeRealRoots(a, b, c, d) {
        var A = a;
        var B = b / 3.0;
        var C = c / 3.0;
        var D = d;

        var AC = A * C;
        var BD = B * D;
        var B2 = B * B;
        var C2 = C * C;
        var delta1 = A * C - B2;
        var delta2 = A * D - B * C;
        var delta3 = B * D - C2;

        var discriminant = 4.0 * delta1 * delta3 - delta2 * delta2;
        var temp;
        var temp1;

        if (discriminant < 0.0) {
            var ABar;
            var CBar;
            var DBar;

            if (B2 * BD >= AC * C2) {
                ABar = A;
                CBar = delta1;
                DBar = -2.0 * B * delta1 + A * delta2;
            } else {
                ABar = D;
                CBar = delta3;
                DBar = -D * delta2 + 2.0 * C * delta3;
            }

            var s = (DBar < 0.0) ? -1.0 : 1.0; // This is not Math.Sign()!
            var temp0 = -s * Math.abs(ABar) * Math.sqrt(-discriminant);
            temp1 = -DBar + temp0;

            var x = temp1 / 2.0;
            var p = x < 0.0 ? -Math.pow(-x, 1.0 / 3.0) : Math.pow(x, 1.0 / 3.0);
            var q = (temp1 === temp0) ? -p : -CBar / p;

            temp = (CBar <= 0.0) ? p + q : -DBar / (p * p + q * q + CBar);

            if (B2 * BD >= AC * C2) {
                return [(temp - B) / A];
            }

            return [-D / (temp + C)];
        }

        var CBarA = delta1;
        var DBarA = -2.0 * B * delta1 + A * delta2;

        var CBarD = delta3;
        var DBarD = -D * delta2 + 2.0 * C * delta3;

        var squareRootOfDiscriminant = Math.sqrt(discriminant);
        var halfSquareRootOf3 = Math.sqrt(3.0) / 2.0;

        var theta = Math.abs(Math.atan2(A * squareRootOfDiscriminant, -DBarA) / 3.0);
        temp = 2.0 * Math.sqrt(-CBarA);
        var cosine = Math.cos(theta);
        temp1 = temp * cosine;
        var temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta));

        var numeratorLarge = (temp1 + temp3 > 2.0 * B) ? temp1 - B : temp3 - B;
        var denominatorLarge = A;

        var root1 = numeratorLarge / denominatorLarge;

        theta = Math.abs(Math.atan2(D * squareRootOfDiscriminant, -DBarD) / 3.0);
        temp = 2.0 * Math.sqrt(-CBarD);
        cosine = Math.cos(theta);
        temp1 = temp * cosine;
        temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta));

        var numeratorSmall = -D;
        var denominatorSmall = (temp1 + temp3 < 2.0 * C) ? temp1 + C : temp3 + C;

        var root3 = numeratorSmall / denominatorSmall;

        var E = denominatorLarge * denominatorSmall;
        var F = -numeratorLarge * denominatorSmall - denominatorLarge * numeratorSmall;
        var G = numeratorLarge * numeratorSmall;

        var root2 = (C * F - B * G) / (-B * F + C * E);

        if (root1 <= root2) {
            if (root1 <= root3) {
                if (root2 <= root3) {
                    return [root1, root2, root3];
                }
                return [root1, root3, root2];
            }
            return [root3, root1, root2];
        }
        if (root1 <= root3) {
            return [root2, root1, root3];
        }
        if (root2 <= root3) {
            return [root2, root3, root1];
        }
        return [root3, root2, root1];
    }

    /**
     * Provides the real valued roots of the cubic polynomial with the provided coefficients.
     *
     * @param {Number} a The coefficient of the 3rd order monomial.
     * @param {Number} b The coefficient of the 2nd order monomial.
     * @param {Number} c The coefficient of the 1st order monomial.
     * @param {Number} d The coefficient of the 0th order monomial.
     * @returns {Number[]} The real valued roots.
     */
    CubicRealPolynomial.computeRealRoots = function(a, b, c, d) {
        //>>includeStart('debug', pragmas.debug);
        if (typeof a !== 'number') {
            throw new DeveloperError('a is a required number.');
        }
        if (typeof b !== 'number') {
            throw new DeveloperError('b is a required number.');
        }
        if (typeof c !== 'number') {
            throw new DeveloperError('c is a required number.');
        }
        if (typeof d !== 'number') {
            throw new DeveloperError('d is a required number.');
        }
        //>>includeEnd('debug');

        var roots;
        var ratio;
        if (a === 0.0) {
            // Quadratic function: b * x^2 + c * x + d = 0.
            return QuadraticRealPolynomial.computeRealRoots(b, c, d);
        } else if (b === 0.0) {
            if (c === 0.0) {
                if (d === 0.0) {
                    // 3rd order monomial: a * x^3 = 0.
                    return [0.0, 0.0, 0.0];
                }

                // a * x^3 + d = 0
                ratio = -d / a;
                var root = (ratio < 0.0) ? -Math.pow(-ratio, 1.0 / 3.0) : Math.pow(ratio, 1.0 / 3.0);
                return [root, root, root];
            } else if (d === 0.0) {
                // x * (a * x^2 + c) = 0.
                roots = QuadraticRealPolynomial.computeRealRoots(a, 0, c);

                // Return the roots in ascending order.
                if (roots.Length === 0) {
                    return [0.0];
                }
                return [roots[0], 0.0, roots[1]];
            }

            // Deflated cubic polynomial: a * x^3 + c * x + d= 0.
            return computeRealRoots(a, 0, c, d);
        } else if (c === 0.0) {
            if (d === 0.0) {
                // x^2 * (a * x + b) = 0.
                ratio = -b / a;
                if (ratio < 0.0) {
                    return [ratio, 0.0, 0.0];
                }
                return [0.0, 0.0, ratio];
            }
            // a * x^3 + b * x^2 + d = 0.
            return computeRealRoots(a, b, 0, d);
        } else if (d === 0.0) {
            // x * (a * x^2 + b * x + c) = 0
            roots = QuadraticRealPolynomial.computeRealRoots(a, b, c);

            // Return the roots in ascending order.
            if (roots.length === 0) {
                return [0.0];
            } else if (roots[1] <= 0.0) {
                return [roots[0], roots[1], 0.0];
            } else if (roots[0] >= 0.0) {
                return [0.0, roots[0], roots[1]];
            }
            return [roots[0], 0.0, roots[1]];
        }

        return computeRealRoots(a, b, c, d);
    };

    return CubicRealPolynomial;
});