A module for complex numbers
Cartesian representation of a complex number
i : ComplexNumber number
The number i
zero : ComplexNumber number
zero
one : ComplexNumber number
one
negativeOne : ComplexNumber number
one
negativeI : ComplexNumber number
The number i
eToTheIPiOver4 : ComplexNumber Basics.Float
The number e^(i*pi/4)
real : ComplexNumber a -> Real a
Extracts the real part of a complex number
imaginary : ComplexNumber a -> Imaginary a
Extracts the imaginary part of a complex number
add : ComplexNumber number -> ComplexNumber number -> ComplexNumber number
Add two complex numbers together
multiply : ComplexNumber Basics.Float -> ComplexNumber Basics.Float -> ComplexNumber Basics.Float
Multiply two complex numbers together
subtract : ComplexNumber number -> ComplexNumber number -> ComplexNumber number
Subtract two complex numbers together
divide : ComplexNumber Basics.Float -> ComplexNumber Basics.Float -> ComplexNumber Basics.Float
Divide two complex numbers together
modulus : ComplexNumber Basics.Float -> Real Basics.Float
Calculate the modulus of a complex number
conjugate : ComplexNumber number -> ComplexNumber number
Calculate the conjugate of a complex number
imaginaryAxisReflection : ComplexNumber number -> ComplexNumber number
Calculate the imaginary axis reflection of a complex number
power : Basics.Float -> ComplexNumber Basics.Float -> ComplexNumber Basics.Float
Calculate a complex number raised to a power
convertFromCartesianToPolar : ComplexNumber Basics.Float -> Internal.ComplexNumber Basics.Float
Convert from the Cartesian representation of a complex number to the polar representation
convertFromPolarToCartesian : Internal.ComplexNumber Basics.Float -> ComplexNumber Basics.Float
Convert from the polar representation of a complex number to the Cartesian representation
euler : Real Basics.Float -> ComplexNumber Basics.Float
Euler's equation
round : Basics.Int -> ComplexNumber Basics.Float -> ComplexNumber Basics.Float
Round Complex Number
roots : Basics.Int -> ComplexNumber Basics.Float -> List (ComplexNumber Basics.Float)
Calculate the roots of a complex number
sumSemigroup : Semigroup (ComplexNumber number)
Semigroup for Complex Numbers with addition as the operation
productSemigroup : Semigroup (ComplexNumber Basics.Float)
Semigroup for Complex Numbers with addition as the operation
sumCommutativeSemigroup : CommutativeSemigroup (ComplexNumber number)
Semigroup for Complex Numbers with addition as the operation
productCommutativeSemigroup : CommutativeSemigroup (ComplexNumber Basics.Float)
Semigroup for Complex Numbers with multiplicatoin as the operation
sumMonoid : Monoid (ComplexNumber number)
Monoid for Complex Numbers with addition as the operation
productMonoid : Monoid (ComplexNumber Basics.Float)
Monoid for Complex Numbers with multiplication as the operation
sumCommutativeMonoid : CommutativeMonoid (ComplexNumber number)
Monoid for Complex Numbers with addition as the operation
productCommutativeMonoid : CommutativeMonoid (ComplexNumber Basics.Float)
Monoid for Complex Numbers with multiplication as the operation
sumGroup : Group (ComplexNumber number)
Group for Complex Numbers with addition as the operation
productGroup : Group (ComplexNumber Basics.Float)
Group for Complex Numbers with multiplication as the operation
abelianGroup : AbelianGroup (ComplexNumber number)
Group for Complex Numbers with addition as the operation
ring : Ring (ComplexNumber Basics.Float)
Ring for Complex Numbers
divisionRing : DivisionRing (ComplexNumber Basics.Float)
Division Ring for Complex Numbers
commutativeRing : CommutativeRing (ComplexNumber Basics.Float)
Commutative Ring for Complex Numbers
commutativeDivisionRing : CommutativeDivisionRing (ComplexNumber Basics.Float)
Commutative Division Ring for Complex Numbers
field : Field (ComplexNumber Basics.Float)
Field for Complex Numbers
map : (a -> b) -> ComplexNumber a -> ComplexNumber b
Map over a complex number
pure : a -> ComplexNumber a
Place a value in the minimal Complex Number Cartesian context
andMap : ComplexNumber a -> ComplexNumber (a -> b) -> ComplexNumber b
Apply for Complex Number Cartesian representaiton applicative
andThen : (a -> ComplexNumber b) -> ComplexNumber a -> ComplexNumber b
Monadic bind for Complex Number Cartesian representaiton
equal : Typeclasses.Classes.Equality.Equality (ComplexNumber Basics.Float)
Equal
type for ComplexNumber
.
parseComplexNumber : Parser (ComplexNumber Basics.Float)
Parse ComplexNumber
read : String -> Result (List Parser.DeadEnd) (ComplexNumber Basics.Float)
Read ComplexNumber
print : ComplexNumber Basics.Float -> String
Print ComplexNumber
printiNotation : ComplexNumber Basics.Float -> String
Print ComplexNumber i notation with two decimal places
printNotationWithRounding : (Basics.Float -> String) -> ComplexNumber Basics.Float -> String
Print ComplexNumber i notation with rounding function