A module for Real numbers
Real portion
zero : Real number
zero
one : Real number
one
negativeOne : Real number
one
real : Real a -> a
Extracts the value of a Real number
negate : Real number -> Real number
Negate a Real number
round : Basics.Int -> Real Basics.Float -> Real Basics.Float
Round Real Number
add : Real number -> Real number -> Real number
Add two complex numbers together
multiply : Real number -> Real number -> Real number
Multiply two complex numbers together
divide : Real Basics.Float -> Real Basics.Float -> Real Basics.Float
Divide two complex numbers together
greaterThan : Real number -> Real number -> Basics.Bool
Greater than of Real Numbers
power : Real Basics.Float -> Real Basics.Float -> Real Basics.Float
Multiply two complex numbers together
sumSemigroup : Semigroup (Real number)
Semigroup for Real Numbers with addition as the operation
productSemigroup : Semigroup (Real number)
Semigroup for Real Numbers with addition as the operation
sumCommutativeSemigroup : CommutativeSemigroup (Real number)
Semigroup for Real Numbers with addition as the operation
productCommutativeSemigroup : CommutativeSemigroup (Real number)
Semigroup for Real Numbers with multiplicatoin as the operation
sumMonoid : Monoid (Real number)
Monoid for Real Numbers with addition as the operation
productMonoid : Monoid (Real number)
Monoid for Real Numbers with multiplication as the operation
sumCommutativeMonoid : CommutativeMonoid (Real number)
Monoid for Real Numbers with addition as the operation
productCommutativeMonoid : CommutativeMonoid (Real number)
Monoid for Real Numbers with multiplication as the operation
sumGroup : Group (Real number)
Group for Real Numbers with addition as the operation
productGroup : Group (Real Basics.Float)
Group for Real Numbers with multiplication as the operation
abelianGroup : AbelianGroup (Real number)
Group for Real Numbers with addition as the operation
ring : Ring (Real Basics.Float)
Ring for Real Numbers
divisionRing : DivisionRing (Real Basics.Float)
Division Ring for Real Numbers
commutativeRing : CommutativeRing (Real Basics.Float)
Commutative Ring for Real Numbers
commutativeDivisionRing : CommutativeDivisionRing (Real Basics.Float)
Commutative Division Ring for Real Numbers
field : Field (Real Basics.Float)
Field for Real Numbers
map : (a -> b) -> Real a -> Real b
Map over a Real number
pure : a -> Real a
Place a value in the minimal Real Number context
andMap : Real a -> Real (a -> b) -> Real b
Apply for Real Number representaiton applicative
andThen : (a -> Real b) -> Real a -> Real b
Monadic bind for Real Number representaiton
equal : Typeclasses.Classes.Equality.Equality (Real Basics.Float)
Equal
type for Real
.
print : Real Basics.Float -> String
Print Real Number
parseReal : Parser (Real Basics.Float)
Parse Real Number
printNotationWithRounding : (Basics.Float -> String) -> Real Basics.Float -> String
Print Real i notation with rounding function