This file was automatically generated by
protoc-gen-elm
4.0.1protoc
4.22.2google/protobuf/any.proto, google/protobuf/api.proto, google/protobuf/descriptor.proto, google/protobuf/duration.proto, google/protobuf/empty.proto, google/protobuf/field_mask.proto, google/protobuf/source_context.proto, google/protobuf/struct.proto, google/protobuf/timestamp.proto, google/protobuf/type.proto, google/protobuf/wrappers.proto
To run it, add a dependency via elm install
on elm-protocol-buffers
version latest or higher.
Protocol Buffers - Google's data interchange format Copyright 2008 Google Inc. All rights reserved. https://developers.google.com/protocol-buffers/
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Author: kenton
Internals_.Proto__Google__Protobuf__Any
Any
contains an arbitrary serialized protocol buffer message along with a
URL that describes the type of the serialized message.
Protobuf library provides support to pack/unpack Any values in the form of utility functions or additional generated methods of the Any type.
Example 1: Pack and unpack a message in C++.
Foo foo = ...;
Any any;
any.PackFrom(foo);
...
if (any.UnpackTo(&foo)) {
...
}
Example 2: Pack and unpack a message in Java.
Foo foo = ...;
Any any = Any.pack(foo);
...
if (any.is(Foo.class)) {
foo = any.unpack(Foo.class);
}
// or ...
if (any.isSameTypeAs(Foo.getDefaultInstance())) {
foo = any.unpack(Foo.getDefaultInstance());
}
Example 3: Pack and unpack a message in Python.
foo = Foo(...)
any = Any()
any.Pack(foo)
...
if any.Is(Foo.DESCRIPTOR):
any.Unpack(foo)
...
Example 4: Pack and unpack a message in Go
foo := &pb.Foo{...}
any, err := anypb.New(foo)
if err != nil {
...
}
...
foo := &pb.Foo{}
if err := any.UnmarshalTo(foo); err != nil {
...
}
The pack methods provided by protobuf library will by default use 'type.googleapis.com/full.type.name' as the type URL and the unpack methods only use the fully qualified type name after the last '/' in the type URL, for example "foo.bar.com/x/y.z" will yield type name "y.z".
JSON
The JSON representation of an Any
value uses the regular
representation of the deserialized, embedded message, with an
additional field @type
which contains the type URL. Example:
package google.profile;
message Person {
string first_name = 1;
string last_name = 2;
}
{
"@type": "type.googleapis.com/google.profile.Person",
"firstName": <string>,
"lastName": <string>
}
If the embedded message type is well-known and has a custom JSON
representation, that representation will be embedded adding a field
value
which holds the custom JSON in addition to the @type
field. Example (for message [google.protobuf.Duration]):
{
"@type": "type.googleapis.com/google.protobuf.Duration",
"value": "1.212s"
}
A URL/resource name that uniquely identifies the type of the serialized
protocol buffer message. This string must contain at least
one "/" character. The last segment of the URL's path must represent
the fully qualified name of the type (as in
path/google.protobuf.Duration
). The name should be in a canonical form
(e.g., leading "." is not accepted).
In practice, teams usually precompile into the binary all types that they
expect it to use in the context of Any. However, for URLs which use the
scheme http
, https
, or no scheme, one can optionally set up a type
server that maps type URLs to message definitions as follows:
https
is assumed.Note: this functionality is not currently available in the official protobuf release, and it is not used for type URLs beginning with type.googleapis.com.
Schemes other than http
, https
(or the empty scheme) might be
used with implementation specific semantics.
Must be a valid serialized protocol buffer of the above specified type.
Internals_.Proto__Google__Protobuf__Api
Api is a light-weight descriptor for an API Interface.
Interfaces are also described as "protocol buffer services" in some contexts, such as by the "service" keyword in a .proto file, but they are different from API Services, which represent a concrete implementation of an interface as opposed to simply a description of methods and bindings. They are also sometimes simply referred to as "APIs" in other contexts, such as the name of this message itself. See https://cloud.google.com/apis/design/glossary for detailed terminology.
The fully qualified name of this interface, including package name followed by the interface's simple name.
The methods of this interface, in unspecified order.
Any metadata attached to the interface.
A version string for this interface. If specified, must have the form
major-version.minor-version
, as in 1.10
. If the minor version is
omitted, it defaults to zero. If the entire version field is empty, the
major version is derived from the package name, as outlined below. If the
field is not empty, the version in the package name will be verified to be
consistent with what is provided here.
The versioning schema uses semantic versioning where the major version number indicates a breaking change and the minor version an additive, non-breaking change. Both version numbers are signals to users what to expect from different versions, and should be carefully chosen based on the product plan.
The major version is also reflected in the package name of the
interface, which must end in v<major-version>
, as in
google.feature.v1
. For major versions 0 and 1, the suffix can
be omitted. Zero major versions must only be used for
experimental, non-GA interfaces.
Source context for the protocol buffer service represented by this message.
Included interfaces. See [Mixin].
The source syntax of the service.
Internals_.Proto__Google__Protobuf__BoolValue
Wrapper message for bool
.
The JSON representation for BoolValue
is JSON true
and false
.
The bool value.
Internals_.Proto__Google__Protobuf__BytesValue
Wrapper message for bytes
.
The JSON representation for BytesValue
is JSON string.
The bytes value.
Internals_.Proto__Google__Protobuf__DescriptorProto
Describes a message type.
Reserved field names, which may not be used by fields in the same message. A given name may only be reserved once.
Internals_.Proto__Google__Protobuf__DescriptorProto_
Type wrapper for alias type DescriptorProto
to avoid unlimited recursion.
For a more in-depth explanation why we need this, read this: https://github.com/elm/compiler/blob/master/hints/recursive-alias.md.
Internals_.Proto__Google__Protobuf__DoubleValue
Wrapper message for double
.
The JSON representation for DoubleValue
is JSON number.
The double value.
Internals_.Proto__Google__Protobuf__Duration
A Duration represents a signed, fixed-length span of time represented as a count of seconds and fractions of seconds at nanosecond resolution. It is independent of any calendar and concepts like "day" or "month". It is related to Timestamp in that the difference between two Timestamp values is a Duration and it can be added or subtracted from a Timestamp. Range is approximately +-10,000 years.
Example 1: Compute Duration from two Timestamps in pseudo code.
Timestamp start = ...;
Timestamp end = ...;
Duration duration = ...;
duration.seconds = end.seconds - start.seconds;
duration.nanos = end.nanos - start.nanos;
if (duration.seconds < 0 && duration.nanos > 0) {
duration.seconds += 1;
duration.nanos -= 1000000000;
} else if (duration.seconds > 0 && duration.nanos < 0) {
duration.seconds -= 1;
duration.nanos += 1000000000;
}
Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
Timestamp start = ...;
Duration duration = ...;
Timestamp end = ...;
end.seconds = start.seconds + duration.seconds;
end.nanos = start.nanos + duration.nanos;
if (end.nanos < 0) {
end.seconds -= 1;
end.nanos += 1000000000;
} else if (end.nanos >= 1000000000) {
end.seconds += 1;
end.nanos -= 1000000000;
}
Example 3: Compute Duration from datetime.timedelta in Python.
td = datetime.timedelta(days=3, minutes=10)
duration = Duration()
duration.FromTimedelta(td)
In JSON format, the Duration type is encoded as a string rather than an object, where the string ends in the suffix "s" (indicating seconds) and is preceded by the number of seconds, with nanoseconds expressed as fractional seconds. For example, 3 seconds with 0 nanoseconds should be encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should be expressed in JSON format as "3.000000001s", and 3 seconds and 1 microsecond should be expressed in JSON format as "3.000001s".
Signed seconds of the span of time. Must be from -315,576,000,000 to +315,576,000,000 inclusive. Note: these bounds are computed from: 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
Signed fractions of a second at nanosecond resolution of the span
of time. Durations less than one second are represented with a 0
seconds
field and a positive or negative nanos
field. For durations
of one second or more, a non-zero value for the nanos
field must be
of the same sign as the seconds
field. Must be from -999,999,999
to +999,999,999 inclusive.
Internals_.Proto__Google__Protobuf__Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
Internals_.Proto__Google__Protobuf__Enum
Enum type definition.
Enum type name.
Enum value definitions.
Protocol buffer options.
The source context.
The source syntax.
Internals_.Proto__Google__Protobuf__EnumDescriptorProto
Describes an enum type.
Range of reserved numeric values. Reserved numeric values may not be used by enum values in the same enum declaration. Reserved ranges may not overlap.
Reserved enum value names, which may not be reused. A given name may only be reserved once.
Internals_.Proto__Google__Protobuf__EnumOptions
Set this option to true to allow mapping different tag names to the same value.
Is this enum deprecated? Depending on the target platform, this can emit Deprecated annotations for the enum, or it will be completely ignored; in the very least, this is a formalization for deprecating enums.
Enable the legacy handling of JSON field name conflicts. This lowercases
and strips underscored from the fields before comparison in proto3 only.
The new behavior takes json_name
into account and applies to proto2 as
well.
TODO(b/261750190) Remove this legacy behavior once downstream teams have
had time to migrate.
The parser stores options it doesn't recognize here. See above.
Internals_.Proto__Google__Protobuf__EnumValue
Enum value definition.
Enum value name.
Enum value number.
Protocol buffer options.
Internals_.Proto__Google__Protobuf__EnumValueDescriptorProto
Describes a value within an enum.
Internals_.Proto__Google__Protobuf__EnumValueOptions
Is this enum value deprecated? Depending on the target platform, this can emit Deprecated annotations for the enum value, or it will be completely ignored; in the very least, this is a formalization for deprecating enum values.
The parser stores options it doesn't recognize here. See above.
Internals_.Proto__Google__Protobuf__ExtensionRangeOptions
The parser stores options it doesn't recognize here. See above.
Internals_.Proto__Google__Protobuf__Field
A single field of a message type.
The field type.
The field cardinality.
The field number.
The field name.
The field type URL, without the scheme, for message or enumeration
types. Example: "type.googleapis.com/google.protobuf.Timestamp"
.
The index of the field type in Type.oneofs
, for message or enumeration
types. The first type has index 1; zero means the type is not in the list.
Whether to use alternative packed wire representation.
The protocol buffer options.
The field JSON name.
The string value of the default value of this field. Proto2 syntax only.
Internals_.Proto__Google__Protobuf__FieldDescriptorProto
Describes a field within a message.
If type_name is set, this need not be set. If both this and type_name are set, this must be one of TYPE_ENUM, TYPE_MESSAGE or TYPE_GROUP.
For message and enum types, this is the name of the type. If the name starts with a '.', it is fully-qualified. Otherwise, C++-like scoping rules are used to find the type (i.e. first the nested types within this message are searched, then within the parent, on up to the root namespace).
For extensions, this is the name of the type being extended. It is resolved in the same manner as type_name.
For numeric types, contains the original text representation of the value. For booleans, "true" or "false". For strings, contains the default text contents (not escaped in any way). For bytes, contains the C escaped value. All bytes >= 128 are escaped.
If set, gives the index of a oneof in the containing type's oneof_decl list. This field is a member of that oneof.
JSON name of this field. The value is set by protocol compiler. If the user has set a "json_name" option on this field, that option's value will be used. Otherwise, it's deduced from the field's name by converting it to camelCase.
If true, this is a proto3 "optional". When a proto3 field is optional, it tracks presence regardless of field type.
When proto3_optional is true, this field must be belong to a oneof to signal to old proto3 clients that presence is tracked for this field. This oneof is known as a "synthetic" oneof, and this field must be its sole member (each proto3 optional field gets its own synthetic oneof). Synthetic oneofs exist in the descriptor only, and do not generate any API. Synthetic oneofs must be ordered after all "real" oneofs.
For message fields, proto3_optional doesn't create any semantic change, since non-repeated message fields always track presence. However it still indicates the semantic detail of whether the user wrote "optional" or not. This can be useful for round-tripping the .proto file. For consistency we give message fields a synthetic oneof also, even though it is not required to track presence. This is especially important because the parser can't tell if a field is a message or an enum, so it must always create a synthetic oneof.
Proto2 optional fields do not set this flag, because they already indicate
optional with LABEL_OPTIONAL
.
Internals_.Proto__Google__Protobuf__FieldMask
FieldMask
represents a set of symbolic field paths, for example:
paths: "f.a"
paths: "f.b.d"
Here f
represents a field in some root message, a
and b
fields in the message found in f
, and d
a field found in the
message in f.b
.
Field masks are used to specify a subset of fields that should be returned by a get operation or modified by an update operation. Field masks also have a custom JSON encoding (see below).
When used in the context of a projection, a response message or sub-message is filtered by the API to only contain those fields as specified in the mask. For example, if the mask in the previous example is applied to a response message as follows:
f {
a : 22
b {
d : 1
x : 2
}
y : 13
}
z: 8
The result will not contain specific values for fields x,y and z (their value will be set to the default, and omitted in proto text output):
f {
a : 22
b {
d : 1
}
}
A repeated field is not allowed except at the last position of a paths string.
If a FieldMask object is not present in a get operation, the operation applies to all fields (as if a FieldMask of all fields had been specified).
Note that a field mask does not necessarily apply to the top-level response message. In case of a REST get operation, the field mask applies directly to the response, but in case of a REST list operation, the mask instead applies to each individual message in the returned resource list. In case of a REST custom method, other definitions may be used. Where the mask applies will be clearly documented together with its declaration in the API. In any case, the effect on the returned resource/resources is required behavior for APIs.
A field mask in update operations specifies which fields of the targeted resource are going to be updated. The API is required to only change the values of the fields as specified in the mask and leave the others untouched. If a resource is passed in to describe the updated values, the API ignores the values of all fields not covered by the mask.
If a repeated field is specified for an update operation, new values will
be appended to the existing repeated field in the target resource. Note that
a repeated field is only allowed in the last position of a paths
string.
If a sub-message is specified in the last position of the field mask for an update operation, then new value will be merged into the existing sub-message in the target resource.
For example, given the target message:
f {
b {
d: 1
x: 2
}
c: [1]
}
And an update message:
f {
b {
d: 10
}
c: [2]
}
then if the field mask is:
paths: ["f.b", "f.c"]
then the result will be:
f {
b {
d: 10
x: 2
}
c: [1, 2]
}
An implementation may provide options to override this default behavior for repeated and message fields.
In order to reset a field's value to the default, the field must be in the mask and set to the default value in the provided resource. Hence, in order to reset all fields of a resource, provide a default instance of the resource and set all fields in the mask, or do not provide a mask as described below.
If a field mask is not present on update, the operation applies to all fields (as if a field mask of all fields has been specified). Note that in the presence of schema evolution, this may mean that fields the client does not know and has therefore not filled into the request will be reset to their default. If this is unwanted behavior, a specific service may require a client to always specify a field mask, producing an error if not.
As with get operations, the location of the resource which describes the updated values in the request message depends on the operation kind. In any case, the effect of the field mask is required to be honored by the API.
The HTTP kind of an update operation which uses a field mask must be set to PATCH instead of PUT in order to satisfy HTTP semantics (PUT must only be used for full updates).
In JSON, a field mask is encoded as a single string where paths are separated by a comma. Fields name in each path are converted to/from lower-camel naming conventions.
As an example, consider the following message declarations:
message Profile {
User user = 1;
Photo photo = 2;
}
message User {
string display_name = 1;
string address = 2;
}
In proto a field mask for Profile
may look as such:
mask {
paths: "user.display_name"
paths: "photo"
}
In JSON, the same mask is represented as below:
{
mask: "user.displayName,photo"
}
Field masks treat fields in oneofs just as regular fields. Consider the following message:
message SampleMessage {
oneof test_oneof {
string name = 4;
SubMessage sub_message = 9;
}
}
The field mask can be:
mask {
paths: "name"
}
Or:
mask {
paths: "sub_message"
}
Note that oneof type names ("test_oneof" in this case) cannot be used in paths.
The implementation of any API method which has a FieldMask type field in the
request should verify the included field paths, and return an
INVALID_ARGUMENT
error if any path is unmappable.
The set of field mask paths.
Internals_.Proto__Google__Protobuf__FieldOptions
The ctype option instructs the C++ code generator to use a different representation of the field than it normally would. See the specific options below. This option is not yet implemented in the open source release -- sorry, we'll try to include it in a future version!
The packed option can be enabled for repeated primitive fields to enable a more efficient representation on the wire. Rather than repeatedly writing the tag and type for each element, the entire array is encoded as a single length-delimited blob. In proto3, only explicit setting it to false will avoid using packed encoding.
The jstype option determines the JavaScript type used for values of the field. The option is permitted only for 64 bit integral and fixed types (int64, uint64, sint64, fixed64, sfixed64). A field with jstype JS_STRING is represented as JavaScript string, which avoids loss of precision that can happen when a large value is converted to a floating point JavaScript. Specifying JS_NUMBER for the jstype causes the generated JavaScript code to use the JavaScript "number" type. The behavior of the default option JS_NORMAL is implementation dependent.
This option is an enum to permit additional types to be added, e.g. goog.math.Integer.
Should this field be parsed lazily? Lazy applies only to message-type fields. It means that when the outer message is initially parsed, the inner message's contents will not be parsed but instead stored in encoded form. The inner message will actually be parsed when it is first accessed.
This is only a hint. Implementations are free to choose whether to use eager or lazy parsing regardless of the value of this option. However, setting this option true suggests that the protocol author believes that using lazy parsing on this field is worth the additional bookkeeping overhead typically needed to implement it.
This option does not affect the public interface of any generated code; all method signatures remain the same. Furthermore, thread-safety of the interface is not affected by this option; const methods remain safe to call from multiple threads concurrently, while non-const methods continue to require exclusive access.
Note that implementations may choose not to check required fields within a lazy sub-message. That is, calling IsInitialized() on the outer message may return true even if the inner message has missing required fields. This is necessary because otherwise the inner message would have to be parsed in order to perform the check, defeating the purpose of lazy parsing. An implementation which chooses not to check required fields must be consistent about it. That is, for any particular sub-message, the implementation must either always check its required fields, or never check its required fields, regardless of whether or not the message has been parsed.
As of May 2022, lazy verifies the contents of the byte stream during parsing. An invalid byte stream will cause the overall parsing to fail.
unverified_lazy does no correctness checks on the byte stream. This should only be used where lazy with verification is prohibitive for performance reasons.
Is this field deprecated? Depending on the target platform, this can emit Deprecated annotations for accessors, or it will be completely ignored; in the very least, this is a formalization for deprecating fields.
For Google-internal migration only. Do not use.
Indicate that the field value should not be printed out when using debug formats, e.g. when the field contains sensitive credentials.
The parser stores options it doesn't recognize here. See above.
Internals_.Proto__Google__Protobuf__FileDescriptorProto
Describes a complete .proto file.
file name, relative to root of source tree
e.g. "foo", "foo.bar", etc.
Names of files imported by this file.
Indexes of the public imported files in the dependency list above.
Indexes of the weak imported files in the dependency list. For Google-internal migration only. Do not use.
All top-level definitions in this file.
This field contains optional information about the original source code. You may safely remove this entire field without harming runtime functionality of the descriptors -- the information is needed only by development tools.
The syntax of the proto file. The supported values are "proto2", "proto3", and "editions".
If edition
is present, this value must be "editions".
The edition of the proto file, which is an opaque string.
Internals_.Proto__Google__Protobuf__FileDescriptorSet
The protocol compiler can output a FileDescriptorSet containing the .proto files it parses.
Internals_.Proto__Google__Protobuf__FileOptions
=================================================================== Options
Each of the definitions above may have "options" attached. These are just annotations which may cause code to be generated slightly differently or may contain hints for code that manipulates protocol messages.
Clients may define custom options as extensions of the _Options messages. These extensions may not yet be known at parsing time, so the parser cannot store the values in them. Instead it stores them in a field in the _Options message called uninterpreted_option. This field must have the same name across all *Options messages. We then use this field to populate the extensions when we build a descriptor, at which point all protos have been parsed and so all extensions are known.
Extension numbers for custom options may be chosen as follows:
Sets the Java package where classes generated from this .proto will be placed. By default, the proto package is used, but this is often inappropriate because proto packages do not normally start with backwards domain names.
Controls the name of the wrapper Java class generated for the .proto file. That class will always contain the .proto file's getDescriptor() method as well as any top-level extensions defined in the .proto file. If java_multiple_files is disabled, then all the other classes from the .proto file will be nested inside the single wrapper outer class.
If enabled, then the Java code generator will generate a separate .java file for each top-level message, enum, and service defined in the .proto file. Thus, these types will not be nested inside the wrapper class named by java_outer_classname. However, the wrapper class will still be generated to contain the file's getDescriptor() method as well as any top-level extensions defined in the file.
This option does nothing.
If set true, then the Java2 code generator will generate code that throws an exception whenever an attempt is made to assign a non-UTF-8 byte sequence to a string field. Message reflection will do the same. However, an extension field still accepts non-UTF-8 byte sequences. This option has no effect on when used with the lite runtime.
Sets the Go package where structs generated from this .proto will be placed. If omitted, the Go package will be derived from the following:
Should generic services be generated in each language? "Generic" services are not specific to any particular RPC system. They are generated by the main code generators in each language (without additional plugins). Generic services were the only kind of service generation supported by early versions of google.protobuf.
Generic services are now considered deprecated in favor of using plugins that generate code specific to your particular RPC system. Therefore, these default to false. Old code which depends on generic services should explicitly set them to true.
Is this file deprecated? Depending on the target platform, this can emit Deprecated annotations for everything in the file, or it will be completely ignored; in the very least, this is a formalization for deprecating files.
Enables the use of arenas for the proto messages in this file. This applies only to generated classes for C++.
Sets the objective c class prefix which is prepended to all objective c generated classes from this .proto. There is no default.
Namespace for generated classes; defaults to the package.
By default Swift generators will take the proto package and CamelCase it replacing '.' with underscore and use that to prefix the types/symbols defined. When this options is provided, they will use this value instead to prefix the types/symbols defined.
Sets the php class prefix which is prepended to all php generated classes from this .proto. Default is empty.
Use this option to change the namespace of php generated classes. Default is empty. When this option is empty, the package name will be used for determining the namespace.
Use this option to change the namespace of php generated metadata classes. Default is empty. When this option is empty, the proto file name will be used for determining the namespace.
Use this option to change the package of ruby generated classes. Default is empty. When this option is not set, the package name will be used for determining the ruby package.
The parser stores options it doesn't recognize here. See the documentation for the "Options" section above.
Internals_.Proto__Google__Protobuf__FloatValue
Wrapper message for float
.
The JSON representation for FloatValue
is JSON number.
The float value.
Internals_.Proto__Google__Protobuf__GeneratedCodeInfo
Describes the relationship between generated code and its original source file. A GeneratedCodeInfo message is associated with only one generated source file, but may contain references to different source .proto files.
An Annotation connects some span of text in generated code to an element of its generating .proto file.
Internals_.Proto__Google__Protobuf__Int32Value
Wrapper message for int32
.
The JSON representation for Int32Value
is JSON number.
The int32 value.
Internals_.Proto__Google__Protobuf__Int64Value
Wrapper message for int64
.
The JSON representation for Int64Value
is JSON string.
The int64 value.
Internals_.Proto__Google__Protobuf__ListValue
ListValue
is a wrapper around a repeated field of values.
The JSON representation for ListValue
is JSON array.
Repeated field of dynamically typed values.
Internals_.Proto__Google__Protobuf__ListValue_
Type wrapper for alias type ListValue
to avoid unlimited recursion.
For a more in-depth explanation why we need this, read this: https://github.com/elm/compiler/blob/master/hints/recursive-alias.md.
Internals_.Proto__Google__Protobuf__MessageOptions
Set true to use the old proto1 MessageSet wire format for extensions. This is provided for backwards-compatibility with the MessageSet wire format. You should not use this for any other reason: It's less efficient, has fewer features, and is more complicated.
The message must be defined exactly as follows: message Foo { option message_set_wire_format = true; extensions 4 to max; } Note that the message cannot have any defined fields; MessageSets only have extensions.
All extensions of your type must be singular messages; e.g. they cannot be int32s, enums, or repeated messages.
Because this is an option, the above two restrictions are not enforced by the protocol compiler.
Disables the generation of the standard "descriptor()" accessor, which can conflict with a field of the same name. This is meant to make migration from proto1 easier; new code should avoid fields named "descriptor".
Is this message deprecated? Depending on the target platform, this can emit Deprecated annotations for the message, or it will be completely ignored; in the very least, this is a formalization for deprecating messages.
NOTE: Do not set the option in .proto files. Always use the maps syntax instead. The option should only be implicitly set by the proto compiler parser.
Whether the message is an automatically generated map entry type for the maps field.
For maps fields:
map
Implementations may choose not to generate the map_entry=true message, but use a native map in the target language to hold the keys and values. The reflection APIs in such implementations still need to work as if the field is a repeated message field.
Enable the legacy handling of JSON field name conflicts. This lowercases
and strips underscored from the fields before comparison in proto3 only.
The new behavior takes json_name
into account and applies to proto2 as
well.
This should only be used as a temporary measure against broken builds due to the change in behavior for JSON field name conflicts.
TODO(b/261750190) This is legacy behavior we plan to remove once downstream teams have had time to migrate.
The parser stores options it doesn't recognize here. See above.
Internals_.Proto__Google__Protobuf__Method
Method represents a method of an API interface.
The simple name of this method.
A URL of the input message type.
If true, the request is streamed.
The URL of the output message type.
If true, the response is streamed.
Any metadata attached to the method.
The source syntax of this method.
Internals_.Proto__Google__Protobuf__MethodDescriptorProto
Describes a method of a service.
Input and output type names. These are resolved in the same way as FieldDescriptorProto.type_name, but must refer to a message type.
Identifies if client streams multiple client messages
Identifies if server streams multiple server messages
Internals_.Proto__Google__Protobuf__MethodOptions
Note: Field numbers 1 through 32 are reserved for Google's internal RPC framework. We apologize for hoarding these numbers to ourselves, but we were already using them long before we decided to release Protocol Buffers.
Is this method deprecated? Depending on the target platform, this can emit Deprecated annotations for the method, or it will be completely ignored; in the very least, this is a formalization for deprecating methods.
The parser stores options it doesn't recognize here. See above.
Internals_.Proto__Google__Protobuf__Mixin
Declares an API Interface to be included in this interface. The including interface must redeclare all the methods from the included interface, but documentation and options are inherited as follows:
If after comment and whitespace stripping, the documentation string of the redeclared method is empty, it will be inherited from the original method.
Each annotation belonging to the service config (http, visibility) which is not set in the redeclared method will be inherited.
If an http annotation is inherited, the path pattern will be modified as follows. Any version prefix will be replaced by the version of the including interface plus the [root] path if specified.
Example of a simple mixin:
package google.acl.v1;
service AccessControl {
// Get the underlying ACL object.
rpc GetAcl(GetAclRequest) returns (Acl) {
option (google.api.http).get = "/v1/{resource=**}:getAcl";
}
}
package google.storage.v2;
service Storage {
rpc GetAcl(GetAclRequest) returns (Acl);
// Get a data record.
rpc GetData(GetDataRequest) returns (Data) {
option (google.api.http).get = "/v2/{resource=**}";
}
}
Example of a mixin configuration:
apis:
- name: google.storage.v2.Storage
mixins:
- name: google.acl.v1.AccessControl
The mixin construct implies that all methods in AccessControl
are
also declared with same name and request/response types in
Storage
. A documentation generator or annotation processor will
see the effective Storage.GetAcl
method after inheriting
documentation and annotations as follows:
service Storage {
// Get the underlying ACL object.
rpc GetAcl(GetAclRequest) returns (Acl) {
option (google.api.http).get = "/v2/{resource=**}:getAcl";
}
...
}
Note how the version in the path pattern changed from v1
to v2
.
If the root
field in the mixin is specified, it should be a
relative path under which inherited HTTP paths are placed. Example:
apis:
- name: google.storage.v2.Storage
mixins:
- name: google.acl.v1.AccessControl
root: acls
This implies the following inherited HTTP annotation:
service Storage {
// Get the underlying ACL object.
rpc GetAcl(GetAclRequest) returns (Acl) {
option (google.api.http).get = "/v2/acls/{resource=**}:getAcl";
}
...
}
The fully qualified name of the interface which is included.
If non-empty specifies a path under which inherited HTTP paths are rooted.
Internals_.Proto__Google__Protobuf__OneofDescriptorProto
Describes a oneof.
Internals_.Proto__Google__Protobuf__OneofOptions
The parser stores options it doesn't recognize here. See above.
Internals_.Proto__Google__Protobuf__Option
A protocol buffer option, which can be attached to a message, field, enumeration, etc.
The option's name. For protobuf built-in options (options defined in
descriptor.proto), this is the short name. For example, "map_entry"
.
For custom options, it should be the fully-qualified name. For example,
"google.api.http"
.
The option's value packed in an Any message. If the value is a primitive, the corresponding wrapper type defined in google/protobuf/wrappers.proto should be used. If the value is an enum, it should be stored as an int32 value using the google.protobuf.Int32Value type.
Internals_.Proto__Google__Protobuf__ServiceDescriptorProto
Describes a service.
Internals_.Proto__Google__Protobuf__ServiceOptions
Note: Field numbers 1 through 32 are reserved for Google's internal RPC framework. We apologize for hoarding these numbers to ourselves, but we were already using them long before we decided to release Protocol Buffers.
Is this service deprecated? Depending on the target platform, this can emit Deprecated annotations for the service, or it will be completely ignored; in the very least, this is a formalization for deprecating services.
The parser stores options it doesn't recognize here. See above.
Internals_.Proto__Google__Protobuf__SourceCodeInfo
=================================================================== Optional source code info
Encapsulates information about the original source file from which a FileDescriptorProto was generated.
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools.
For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
Internals_.Proto__Google__Protobuf__SourceContext
SourceContext
represents information about the source of a
protobuf element, like the file in which it is defined.
The path-qualified name of the .proto file that contained the associated
protobuf element. For example: "google/protobuf/source_context.proto"
.
Internals_.Proto__Google__Protobuf__StringValue
Wrapper message for string
.
The JSON representation for StringValue
is JSON string.
The string value.
Internals_.Proto__Google__Protobuf__Struct
Struct
represents a structured data value, consisting of fields
which map to dynamically typed values. In some languages, Struct
might be supported by a native representation. For example, in
scripting languages like JS a struct is represented as an
object. The details of that representation are described together
with the proto support for the language.
The JSON representation for Struct
is JSON object.
Unordered map of dynamically typed values.
Internals_.Proto__Google__Protobuf__Timestamp
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}][.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime
object can be converted
to this format using
strftime
with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive.
Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive.
Internals_.Proto__Google__Protobuf__Type
A protocol buffer message type.
The fully qualified message name.
The list of fields.
The list of types appearing in oneof
definitions in this type.
The protocol buffer options.
The source context.
The source syntax.
Internals_.Proto__Google__Protobuf__UInt32Value
Wrapper message for uint32
.
The JSON representation for UInt32Value
is JSON number.
The uint32 value.
Internals_.Proto__Google__Protobuf__UInt64Value
Wrapper message for uint64
.
The JSON representation for UInt64Value
is JSON string.
The uint64 value.
Internals_.Proto__Google__Protobuf__UninterpretedOption
A message representing a option the parser does not recognize. This only appears in options protos created by the compiler::Parser class. DescriptorPool resolves these when building Descriptor objects. Therefore, options protos in descriptor objects (e.g. returned by Descriptor::options(), or produced by Descriptor::CopyTo()) will never have UninterpretedOptions in them.
The value of the uninterpreted option, in whatever type the tokenizer identified it as during parsing. Exactly one of these should be set.
Internals_.Proto__Google__Protobuf__Value
Value
represents a dynamically typed value which can be either
null, a number, a string, a boolean, a recursive struct value, or a
list of values. A producer of value is expected to set one of these
variants. Absence of any variant indicates an error.
The JSON representation for Value
is JSON value.
Internals_.Proto__Google__Protobuf__Value_
Type wrapper for alias type Value
to avoid unlimited recursion.
For a more in-depth explanation why we need this, read this: https://github.com/elm/compiler/blob/master/hints/recursive-alias.md.
decodeAny : Protobuf.Decode.Decoder Any
Declares how to decode a Any
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeApi : Protobuf.Decode.Decoder Api
Declares how to decode a Api
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeBoolValue : Protobuf.Decode.Decoder BoolValue
Declares how to decode a BoolValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeBytesValue : Protobuf.Decode.Decoder BytesValue
Declares how to decode a BytesValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeDescriptorProto : Protobuf.Decode.Decoder DescriptorProto
Declares how to decode a DescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeDoubleValue : Protobuf.Decode.Decoder DoubleValue
Declares how to decode a DoubleValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeDuration : Protobuf.Decode.Decoder Duration
Declares how to decode a Duration
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeEmpty : Protobuf.Decode.Decoder Empty
Declares how to decode a Empty
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeEnum : Protobuf.Decode.Decoder Enum
Declares how to decode a Enum
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeEnumDescriptorProto : Protobuf.Decode.Decoder EnumDescriptorProto
Declares how to decode a EnumDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeEnumOptions : Protobuf.Decode.Decoder EnumOptions
Declares how to decode a EnumOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeEnumValue : Protobuf.Decode.Decoder EnumValue
Declares how to decode a EnumValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeEnumValueDescriptorProto : Protobuf.Decode.Decoder EnumValueDescriptorProto
Declares how to decode a EnumValueDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeEnumValueOptions : Protobuf.Decode.Decoder EnumValueOptions
Declares how to decode a EnumValueOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeExtensionRangeOptions : Protobuf.Decode.Decoder ExtensionRangeOptions
Declares how to decode a ExtensionRangeOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeField : Protobuf.Decode.Decoder Field
Declares how to decode a Field
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeFieldDescriptorProto : Protobuf.Decode.Decoder FieldDescriptorProto
Declares how to decode a FieldDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeFieldMask : Protobuf.Decode.Decoder FieldMask
Declares how to decode a FieldMask
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeFieldOptions : Protobuf.Decode.Decoder FieldOptions
Declares how to decode a FieldOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeFileDescriptorProto : Protobuf.Decode.Decoder FileDescriptorProto
Declares how to decode a FileDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeFileDescriptorSet : Protobuf.Decode.Decoder FileDescriptorSet
Declares how to decode a FileDescriptorSet
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeFileOptions : Protobuf.Decode.Decoder FileOptions
Declares how to decode a FileOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeFloatValue : Protobuf.Decode.Decoder FloatValue
Declares how to decode a FloatValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeGeneratedCodeInfo : Protobuf.Decode.Decoder GeneratedCodeInfo
Declares how to decode a GeneratedCodeInfo
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeInt32Value : Protobuf.Decode.Decoder Int32Value
Declares how to decode a Int32Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeInt64Value : Protobuf.Decode.Decoder Int64Value
Declares how to decode a Int64Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeListValue : Protobuf.Decode.Decoder ListValue
Declares how to decode a ListValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeMessageOptions : Protobuf.Decode.Decoder MessageOptions
Declares how to decode a MessageOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeMethod : Protobuf.Decode.Decoder Method
Declares how to decode a Method
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeMethodDescriptorProto : Protobuf.Decode.Decoder MethodDescriptorProto
Declares how to decode a MethodDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeMethodOptions : Protobuf.Decode.Decoder MethodOptions
Declares how to decode a MethodOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeMixin : Protobuf.Decode.Decoder Mixin
Declares how to decode a Mixin
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeOneofDescriptorProto : Protobuf.Decode.Decoder OneofDescriptorProto
Declares how to decode a OneofDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeOneofOptions : Protobuf.Decode.Decoder OneofOptions
Declares how to decode a OneofOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeOption : Protobuf.Decode.Decoder Option
Declares how to decode a Option
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeServiceDescriptorProto : Protobuf.Decode.Decoder ServiceDescriptorProto
Declares how to decode a ServiceDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeServiceOptions : Protobuf.Decode.Decoder ServiceOptions
Declares how to decode a ServiceOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeSourceCodeInfo : Protobuf.Decode.Decoder SourceCodeInfo
Declares how to decode a SourceCodeInfo
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeSourceContext : Protobuf.Decode.Decoder SourceContext
Declares how to decode a SourceContext
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeStringValue : Protobuf.Decode.Decoder StringValue
Declares how to decode a StringValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeStruct : Protobuf.Decode.Decoder Struct
Declares how to decode a Struct
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeTimestamp : Protobuf.Decode.Decoder Timestamp
Declares how to decode a Timestamp
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeType : Protobuf.Decode.Decoder Type
Declares how to decode a Type
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeUInt32Value : Protobuf.Decode.Decoder UInt32Value
Declares how to decode a UInt32Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeUInt64Value : Protobuf.Decode.Decoder UInt64Value
Declares how to decode a UInt64Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeUninterpretedOption : Protobuf.Decode.Decoder UninterpretedOption
Declares how to decode a UninterpretedOption
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
decodeValue : Protobuf.Decode.Decoder Value
Declares how to decode a Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
defaultAny : Any
Default for Any. Should only be used for 'required' decoders as an initial value.
defaultApi : Api
Default for Api. Should only be used for 'required' decoders as an initial value.
defaultBoolValue : BoolValue
Default for BoolValue. Should only be used for 'required' decoders as an initial value.
defaultBytesValue : BytesValue
Default for BytesValue. Should only be used for 'required' decoders as an initial value.
defaultDescriptorProto : DescriptorProto
Default for DescriptorProto. Should only be used for 'required' decoders as an initial value.
defaultDoubleValue : DoubleValue
Default for DoubleValue. Should only be used for 'required' decoders as an initial value.
defaultDuration : Duration
Default for Duration. Should only be used for 'required' decoders as an initial value.
defaultEmpty : Empty
Default for Empty. Should only be used for 'required' decoders as an initial value.
defaultEnum : Enum
Default for Enum. Should only be used for 'required' decoders as an initial value.
defaultEnumDescriptorProto : EnumDescriptorProto
Default for EnumDescriptorProto. Should only be used for 'required' decoders as an initial value.
defaultEnumOptions : EnumOptions
Default for EnumOptions. Should only be used for 'required' decoders as an initial value.
defaultEnumValue : EnumValue
Default for EnumValue. Should only be used for 'required' decoders as an initial value.
defaultEnumValueDescriptorProto : EnumValueDescriptorProto
Default for EnumValueDescriptorProto. Should only be used for 'required' decoders as an initial value.
defaultEnumValueOptions : EnumValueOptions
Default for EnumValueOptions. Should only be used for 'required' decoders as an initial value.
defaultExtensionRangeOptions : ExtensionRangeOptions
Default for ExtensionRangeOptions. Should only be used for 'required' decoders as an initial value.
defaultField : Field
Default for Field. Should only be used for 'required' decoders as an initial value.
defaultFieldDescriptorProto : FieldDescriptorProto
Default for FieldDescriptorProto. Should only be used for 'required' decoders as an initial value.
defaultFieldMask : FieldMask
Default for FieldMask. Should only be used for 'required' decoders as an initial value.
defaultFieldOptions : FieldOptions
Default for FieldOptions. Should only be used for 'required' decoders as an initial value.
defaultFileDescriptorProto : FileDescriptorProto
Default for FileDescriptorProto. Should only be used for 'required' decoders as an initial value.
defaultFileDescriptorSet : FileDescriptorSet
Default for FileDescriptorSet. Should only be used for 'required' decoders as an initial value.
defaultFileOptions : FileOptions
Default for FileOptions. Should only be used for 'required' decoders as an initial value.
defaultFloatValue : FloatValue
Default for FloatValue. Should only be used for 'required' decoders as an initial value.
defaultGeneratedCodeInfo : GeneratedCodeInfo
Default for GeneratedCodeInfo. Should only be used for 'required' decoders as an initial value.
defaultInt32Value : Int32Value
Default for Int32Value. Should only be used for 'required' decoders as an initial value.
defaultInt64Value : Int64Value
Default for Int64Value. Should only be used for 'required' decoders as an initial value.
defaultListValue : ListValue
Default for ListValue. Should only be used for 'required' decoders as an initial value.
defaultMessageOptions : MessageOptions
Default for MessageOptions. Should only be used for 'required' decoders as an initial value.
defaultMethod : Method
Default for Method. Should only be used for 'required' decoders as an initial value.
defaultMethodDescriptorProto : MethodDescriptorProto
Default for MethodDescriptorProto. Should only be used for 'required' decoders as an initial value.
defaultMethodOptions : MethodOptions
Default for MethodOptions. Should only be used for 'required' decoders as an initial value.
defaultMixin : Mixin
Default for Mixin. Should only be used for 'required' decoders as an initial value.
defaultOneofDescriptorProto : OneofDescriptorProto
Default for OneofDescriptorProto. Should only be used for 'required' decoders as an initial value.
defaultOneofOptions : OneofOptions
Default for OneofOptions. Should only be used for 'required' decoders as an initial value.
defaultOption : Option
Default for Option. Should only be used for 'required' decoders as an initial value.
defaultServiceDescriptorProto : ServiceDescriptorProto
Default for ServiceDescriptorProto. Should only be used for 'required' decoders as an initial value.
defaultServiceOptions : ServiceOptions
Default for ServiceOptions. Should only be used for 'required' decoders as an initial value.
defaultSourceCodeInfo : SourceCodeInfo
Default for SourceCodeInfo. Should only be used for 'required' decoders as an initial value.
defaultSourceContext : SourceContext
Default for SourceContext. Should only be used for 'required' decoders as an initial value.
defaultStringValue : StringValue
Default for StringValue. Should only be used for 'required' decoders as an initial value.
defaultStruct : Struct
Default for Struct. Should only be used for 'required' decoders as an initial value.
defaultTimestamp : Timestamp
Default for Timestamp. Should only be used for 'required' decoders as an initial value.
defaultType : Type
Default for Type. Should only be used for 'required' decoders as an initial value.
defaultUInt32Value : UInt32Value
Default for UInt32Value. Should only be used for 'required' decoders as an initial value.
defaultUInt64Value : UInt64Value
Default for UInt64Value. Should only be used for 'required' decoders as an initial value.
defaultUninterpretedOption : UninterpretedOption
Default for UninterpretedOption. Should only be used for 'required' decoders as an initial value.
defaultValue : Value
Default for Value. Should only be used for 'required' decoders as an initial value.
encodeAny : Any -> Protobuf.Encode.Encoder
Declares how to encode a Any
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeApi : Api -> Protobuf.Encode.Encoder
Declares how to encode a Api
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeBoolValue : BoolValue -> Protobuf.Encode.Encoder
Declares how to encode a BoolValue
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeBytesValue : BytesValue -> Protobuf.Encode.Encoder
Declares how to encode a BytesValue
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeDescriptorProto : DescriptorProto -> Protobuf.Encode.Encoder
Declares how to encode a DescriptorProto
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeDoubleValue : DoubleValue -> Protobuf.Encode.Encoder
Declares how to encode a DoubleValue
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeDuration : Duration -> Protobuf.Encode.Encoder
Declares how to encode a Duration
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeEmpty : Empty -> Protobuf.Encode.Encoder
Declares how to encode a Empty
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeEnum : Enum -> Protobuf.Encode.Encoder
Declares how to encode a Enum
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeEnumDescriptorProto : EnumDescriptorProto -> Protobuf.Encode.Encoder
Declares how to encode a EnumDescriptorProto
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeEnumOptions : EnumOptions -> Protobuf.Encode.Encoder
Declares how to encode a EnumOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeEnumValue : EnumValue -> Protobuf.Encode.Encoder
Declares how to encode a EnumValue
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeEnumValueDescriptorProto : EnumValueDescriptorProto -> Protobuf.Encode.Encoder
Declares how to encode a EnumValueDescriptorProto
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeEnumValueOptions : EnumValueOptions -> Protobuf.Encode.Encoder
Declares how to encode a EnumValueOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeExtensionRangeOptions : ExtensionRangeOptions -> Protobuf.Encode.Encoder
Declares how to encode a ExtensionRangeOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeField : Field -> Protobuf.Encode.Encoder
Declares how to encode a Field
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeFieldDescriptorProto : FieldDescriptorProto -> Protobuf.Encode.Encoder
Declares how to encode a FieldDescriptorProto
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeFieldMask : FieldMask -> Protobuf.Encode.Encoder
Declares how to encode a FieldMask
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeFieldOptions : FieldOptions -> Protobuf.Encode.Encoder
Declares how to encode a FieldOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeFileDescriptorProto : FileDescriptorProto -> Protobuf.Encode.Encoder
Declares how to encode a FileDescriptorProto
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeFileDescriptorSet : FileDescriptorSet -> Protobuf.Encode.Encoder
Declares how to encode a FileDescriptorSet
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeFileOptions : FileOptions -> Protobuf.Encode.Encoder
Declares how to encode a FileOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeFloatValue : FloatValue -> Protobuf.Encode.Encoder
Declares how to encode a FloatValue
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeGeneratedCodeInfo : GeneratedCodeInfo -> Protobuf.Encode.Encoder
Declares how to encode a GeneratedCodeInfo
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeInt32Value : Int32Value -> Protobuf.Encode.Encoder
Declares how to encode a Int32Value
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeInt64Value : Int64Value -> Protobuf.Encode.Encoder
Declares how to encode a Int64Value
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeListValue : ListValue -> Protobuf.Encode.Encoder
Declares how to encode a ListValue
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeMessageOptions : MessageOptions -> Protobuf.Encode.Encoder
Declares how to encode a MessageOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeMethod : Method -> Protobuf.Encode.Encoder
Declares how to encode a Method
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeMethodDescriptorProto : MethodDescriptorProto -> Protobuf.Encode.Encoder
Declares how to encode a MethodDescriptorProto
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeMethodOptions : MethodOptions -> Protobuf.Encode.Encoder
Declares how to encode a MethodOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeMixin : Mixin -> Protobuf.Encode.Encoder
Declares how to encode a Mixin
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeOneofDescriptorProto : OneofDescriptorProto -> Protobuf.Encode.Encoder
Declares how to encode a OneofDescriptorProto
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeOneofOptions : OneofOptions -> Protobuf.Encode.Encoder
Declares how to encode a OneofOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeOption : Option -> Protobuf.Encode.Encoder
Declares how to encode a Option
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeServiceDescriptorProto : ServiceDescriptorProto -> Protobuf.Encode.Encoder
Declares how to encode a ServiceDescriptorProto
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeServiceOptions : ServiceOptions -> Protobuf.Encode.Encoder
Declares how to encode a ServiceOptions
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeSourceCodeInfo : SourceCodeInfo -> Protobuf.Encode.Encoder
Declares how to encode a SourceCodeInfo
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeSourceContext : SourceContext -> Protobuf.Encode.Encoder
Declares how to encode a SourceContext
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeStringValue : StringValue -> Protobuf.Encode.Encoder
Declares how to encode a StringValue
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeStruct : Struct -> Protobuf.Encode.Encoder
Declares how to encode a Struct
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeTimestamp : Timestamp -> Protobuf.Encode.Encoder
Declares how to encode a Timestamp
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeType : Type -> Protobuf.Encode.Encoder
Declares how to encode a Type
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeUInt32Value : UInt32Value -> Protobuf.Encode.Encoder
Declares how to encode a UInt32Value
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeUInt64Value : UInt64Value -> Protobuf.Encode.Encoder
Declares how to encode a UInt64Value
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeUninterpretedOption : UninterpretedOption -> Protobuf.Encode.Encoder
Declares how to encode a UninterpretedOption
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
encodeValue : Value -> Protobuf.Encode.Encoder
Declares how to encode a Value
to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.
fieldNumbersAny : { typeUrl : Basics.Int, value : Basics.Int }
The field numbers for the fields of Any
. This is mostly useful for internals, like documentation generation.
fieldNumbersApi : { name : Basics.Int, methods : Basics.Int, options : Basics.Int, version : Basics.Int, sourceContext : Basics.Int, mixins : Basics.Int, syntax : Basics.Int }
The field numbers for the fields of Api
. This is mostly useful for internals, like documentation generation.
fieldNumbersBoolValue : { value : Basics.Int }
The field numbers for the fields of BoolValue
. This is mostly useful for internals, like documentation generation.
fieldNumbersBytesValue : { value : Basics.Int }
The field numbers for the fields of BytesValue
. This is mostly useful for internals, like documentation generation.
fieldNumbersDescriptorProto : { name : Basics.Int, field : Basics.Int, extension : Basics.Int, nestedType : Basics.Int, enumType : Basics.Int, extensionRange : Basics.Int, oneofDecl : Basics.Int, options : Basics.Int, reservedRange : Basics.Int, reservedName : Basics.Int }
The field numbers for the fields of DescriptorProto
. This is mostly useful for internals, like documentation generation.
fieldNumbersDoubleValue : { value : Basics.Int }
The field numbers for the fields of DoubleValue
. This is mostly useful for internals, like documentation generation.
fieldNumbersDuration : { seconds : Basics.Int, nanos : Basics.Int }
The field numbers for the fields of Duration
. This is mostly useful for internals, like documentation generation.
fieldNumbersEmpty : {}
The field numbers for the fields of Empty
. This is mostly useful for internals, like documentation generation.
fieldNumbersEnum : { name : Basics.Int, enumvalue : Basics.Int, options : Basics.Int, sourceContext : Basics.Int, syntax : Basics.Int }
The field numbers for the fields of Enum
. This is mostly useful for internals, like documentation generation.
fieldNumbersEnumDescriptorProto : { name : Basics.Int, value : Basics.Int, options : Basics.Int, reservedRange : Basics.Int, reservedName : Basics.Int }
The field numbers for the fields of EnumDescriptorProto
. This is mostly useful for internals, like documentation generation.
fieldNumbersEnumOptions : { allowAlias : Basics.Int, deprecated : Basics.Int, deprecatedLegacyJsonFieldConflicts : Basics.Int, uninterpretedOption : Basics.Int }
The field numbers for the fields of EnumOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersEnumValue : { name : Basics.Int, number : Basics.Int, options : Basics.Int }
The field numbers for the fields of EnumValue
. This is mostly useful for internals, like documentation generation.
fieldNumbersEnumValueDescriptorProto : { name : Basics.Int, number : Basics.Int, options : Basics.Int }
The field numbers for the fields of EnumValueDescriptorProto
. This is mostly useful for internals, like documentation generation.
fieldNumbersEnumValueOptions : { deprecated : Basics.Int, uninterpretedOption : Basics.Int }
The field numbers for the fields of EnumValueOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersExtensionRangeOptions : { uninterpretedOption : Basics.Int }
The field numbers for the fields of ExtensionRangeOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersField : { kind : Basics.Int, cardinality : Basics.Int, number : Basics.Int, name : Basics.Int, typeUrl : Basics.Int, oneofIndex : Basics.Int, packed : Basics.Int, options : Basics.Int, jsonName : Basics.Int, defaultValue : Basics.Int }
The field numbers for the fields of Field
. This is mostly useful for internals, like documentation generation.
fieldNumbersFieldDescriptorProto : { name : Basics.Int, number : Basics.Int, label : Basics.Int, type_ : Basics.Int, typeName : Basics.Int, extendee : Basics.Int, defaultValue : Basics.Int, oneofIndex : Basics.Int, jsonName : Basics.Int, options : Basics.Int, proto3Optional : Basics.Int }
The field numbers for the fields of FieldDescriptorProto
. This is mostly useful for internals, like documentation generation.
fieldNumbersFieldMask : { paths : Basics.Int }
The field numbers for the fields of FieldMask
. This is mostly useful for internals, like documentation generation.
fieldNumbersFieldOptions : { ctype : Basics.Int, packed : Basics.Int, jstype : Basics.Int, lazy : Basics.Int, unverifiedLazy : Basics.Int, deprecated : Basics.Int, weak : Basics.Int, debugRedact : Basics.Int, retention : Basics.Int, target : Basics.Int, uninterpretedOption : Basics.Int }
The field numbers for the fields of FieldOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersFileDescriptorProto : { name : Basics.Int, package : Basics.Int, dependency : Basics.Int, publicDependency : Basics.Int, weakDependency : Basics.Int, messageType : Basics.Int, enumType : Basics.Int, service : Basics.Int, extension : Basics.Int, options : Basics.Int, sourceCodeInfo : Basics.Int, syntax : Basics.Int, edition : Basics.Int }
The field numbers for the fields of FileDescriptorProto
. This is mostly useful for internals, like documentation generation.
fieldNumbersFileDescriptorSet : { file : Basics.Int }
The field numbers for the fields of FileDescriptorSet
. This is mostly useful for internals, like documentation generation.
fieldNumbersFileOptions : { javaPackage : Basics.Int, javaOuterClassname : Basics.Int, javaMultipleFiles : Basics.Int, javaGenerateEqualsAndHash : Basics.Int, javaStringCheckUtf8 : Basics.Int, optimizeFor : Basics.Int, goPackage : Basics.Int, ccGenericServices : Basics.Int, javaGenericServices : Basics.Int, pyGenericServices : Basics.Int, phpGenericServices : Basics.Int, deprecated : Basics.Int, ccEnableArenas : Basics.Int, objcClassPrefix : Basics.Int, csharpNamespace : Basics.Int, swiftPrefix : Basics.Int, phpClassPrefix : Basics.Int, phpNamespace : Basics.Int, phpMetadataNamespace : Basics.Int, rubyPackage : Basics.Int, uninterpretedOption : Basics.Int }
The field numbers for the fields of FileOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersFloatValue : { value : Basics.Int }
The field numbers for the fields of FloatValue
. This is mostly useful for internals, like documentation generation.
fieldNumbersGeneratedCodeInfo : { annotation : Basics.Int }
The field numbers for the fields of GeneratedCodeInfo
. This is mostly useful for internals, like documentation generation.
fieldNumbersInt32Value : { value : Basics.Int }
The field numbers for the fields of Int32Value
. This is mostly useful for internals, like documentation generation.
fieldNumbersInt64Value : { value : Basics.Int }
The field numbers for the fields of Int64Value
. This is mostly useful for internals, like documentation generation.
fieldNumbersListValue : { values : Basics.Int }
The field numbers for the fields of ListValue
. This is mostly useful for internals, like documentation generation.
fieldNumbersMessageOptions : { messageSetWireFormat : Basics.Int, noStandardDescriptorAccessor : Basics.Int, deprecated : Basics.Int, mapEntry : Basics.Int, deprecatedLegacyJsonFieldConflicts : Basics.Int, uninterpretedOption : Basics.Int }
The field numbers for the fields of MessageOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersMethod : { name : Basics.Int, requestTypeUrl : Basics.Int, requestStreaming : Basics.Int, responseTypeUrl : Basics.Int, responseStreaming : Basics.Int, options : Basics.Int, syntax : Basics.Int }
The field numbers for the fields of Method
. This is mostly useful for internals, like documentation generation.
fieldNumbersMethodDescriptorProto : { name : Basics.Int, inputType : Basics.Int, outputType : Basics.Int, options : Basics.Int, clientStreaming : Basics.Int, serverStreaming : Basics.Int }
The field numbers for the fields of MethodDescriptorProto
. This is mostly useful for internals, like documentation generation.
fieldNumbersMethodOptions : { deprecated : Basics.Int, idempotencyLevel : Basics.Int, uninterpretedOption : Basics.Int }
The field numbers for the fields of MethodOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersMixin : { name : Basics.Int, root : Basics.Int }
The field numbers for the fields of Mixin
. This is mostly useful for internals, like documentation generation.
fieldNumbersOneofDescriptorProto : { name : Basics.Int, options : Basics.Int }
The field numbers for the fields of OneofDescriptorProto
. This is mostly useful for internals, like documentation generation.
fieldNumbersOneofOptions : { uninterpretedOption : Basics.Int }
The field numbers for the fields of OneofOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersOption : { name : Basics.Int, value : Basics.Int }
The field numbers for the fields of Option
. This is mostly useful for internals, like documentation generation.
fieldNumbersServiceDescriptorProto : { name : Basics.Int, method : Basics.Int, options : Basics.Int }
The field numbers for the fields of ServiceDescriptorProto
. This is mostly useful for internals, like documentation generation.
fieldNumbersServiceOptions : { deprecated : Basics.Int, uninterpretedOption : Basics.Int }
The field numbers for the fields of ServiceOptions
. This is mostly useful for internals, like documentation generation.
fieldNumbersSourceCodeInfo : { location : Basics.Int }
The field numbers for the fields of SourceCodeInfo
. This is mostly useful for internals, like documentation generation.
fieldNumbersSourceContext : { fileName : Basics.Int }
The field numbers for the fields of SourceContext
. This is mostly useful for internals, like documentation generation.
fieldNumbersStringValue : { value : Basics.Int }
The field numbers for the fields of StringValue
. This is mostly useful for internals, like documentation generation.
fieldNumbersStruct : { fields : Basics.Int }
The field numbers for the fields of Struct
. This is mostly useful for internals, like documentation generation.
fieldNumbersTimestamp : { seconds : Basics.Int, nanos : Basics.Int }
The field numbers for the fields of Timestamp
. This is mostly useful for internals, like documentation generation.
fieldNumbersType : { name : Basics.Int, fields : Basics.Int, oneofs : Basics.Int, options : Basics.Int, sourceContext : Basics.Int, syntax : Basics.Int }
The field numbers for the fields of Type
. This is mostly useful for internals, like documentation generation.
fieldNumbersUInt32Value : { value : Basics.Int }
The field numbers for the fields of UInt32Value
. This is mostly useful for internals, like documentation generation.
fieldNumbersUInt64Value : { value : Basics.Int }
The field numbers for the fields of UInt64Value
. This is mostly useful for internals, like documentation generation.
fieldNumbersUninterpretedOption : { name : Basics.Int, identifierValue : Basics.Int, positiveIntValue : Basics.Int, negativeIntValue : Basics.Int, doubleValue : Basics.Int, stringValue : Basics.Int, aggregateValue : Basics.Int }
The field numbers for the fields of UninterpretedOption
. This is mostly useful for internals, like documentation generation.
fieldNumbersValue : { kind : Internals_.FieldNumbersProtoGoogleProtobufValueKind__Kind }
The field numbers for the fields of Value
. This is mostly useful for internals, like documentation generation.
jsonDecodeAny : Json.Decode.Decoder Any
Declares how to decode a Any
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeApi : Json.Decode.Decoder Api
Declares how to decode a Api
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeBoolValue : Json.Decode.Decoder BoolValue
Declares how to decode a BoolValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeBytesValue : Json.Decode.Decoder BytesValue
Declares how to decode a BytesValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeDescriptorProto : Json.Decode.Decoder DescriptorProto
Declares how to decode a DescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeDoubleValue : Json.Decode.Decoder DoubleValue
Declares how to decode a DoubleValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeDuration : Json.Decode.Decoder Duration
Declares how to decode a Duration
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeEmpty : Json.Decode.Decoder Empty
Declares how to decode a Empty
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeEnum : Json.Decode.Decoder Enum
Declares how to decode a Enum
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeEnumDescriptorProto : Json.Decode.Decoder EnumDescriptorProto
Declares how to decode a EnumDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeEnumOptions : Json.Decode.Decoder EnumOptions
Declares how to decode a EnumOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeEnumValue : Json.Decode.Decoder EnumValue
Declares how to decode a EnumValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeEnumValueDescriptorProto : Json.Decode.Decoder EnumValueDescriptorProto
Declares how to decode a EnumValueDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeEnumValueOptions : Json.Decode.Decoder EnumValueOptions
Declares how to decode a EnumValueOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeExtensionRangeOptions : Json.Decode.Decoder ExtensionRangeOptions
Declares how to decode a ExtensionRangeOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeField : Json.Decode.Decoder Field
Declares how to decode a Field
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeFieldDescriptorProto : Json.Decode.Decoder FieldDescriptorProto
Declares how to decode a FieldDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeFieldMask : Json.Decode.Decoder FieldMask
Declares how to decode a FieldMask
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeFieldOptions : Json.Decode.Decoder FieldOptions
Declares how to decode a FieldOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeFileDescriptorProto : Json.Decode.Decoder FileDescriptorProto
Declares how to decode a FileDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeFileDescriptorSet : Json.Decode.Decoder FileDescriptorSet
Declares how to decode a FileDescriptorSet
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeFileOptions : Json.Decode.Decoder FileOptions
Declares how to decode a FileOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeFloatValue : Json.Decode.Decoder FloatValue
Declares how to decode a FloatValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeGeneratedCodeInfo : Json.Decode.Decoder GeneratedCodeInfo
Declares how to decode a GeneratedCodeInfo
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeInt32Value : Json.Decode.Decoder Int32Value
Declares how to decode a Int32Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeInt64Value : Json.Decode.Decoder Int64Value
Declares how to decode a Int64Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeListValue : Json.Decode.Decoder ListValue
Declares how to decode a ListValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeMessageOptions : Json.Decode.Decoder MessageOptions
Declares how to decode a MessageOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeMethod : Json.Decode.Decoder Method
Declares how to decode a Method
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeMethodDescriptorProto : Json.Decode.Decoder MethodDescriptorProto
Declares how to decode a MethodDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeMethodOptions : Json.Decode.Decoder MethodOptions
Declares how to decode a MethodOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeMixin : Json.Decode.Decoder Mixin
Declares how to decode a Mixin
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeOneofDescriptorProto : Json.Decode.Decoder OneofDescriptorProto
Declares how to decode a OneofDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeOneofOptions : Json.Decode.Decoder OneofOptions
Declares how to decode a OneofOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeOption : Json.Decode.Decoder Option
Declares how to decode a Option
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeServiceDescriptorProto : Json.Decode.Decoder ServiceDescriptorProto
Declares how to decode a ServiceDescriptorProto
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeServiceOptions : Json.Decode.Decoder ServiceOptions
Declares how to decode a ServiceOptions
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeSourceCodeInfo : Json.Decode.Decoder SourceCodeInfo
Declares how to decode a SourceCodeInfo
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeSourceContext : Json.Decode.Decoder SourceContext
Declares how to decode a SourceContext
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeStringValue : Json.Decode.Decoder StringValue
Declares how to decode a StringValue
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeStruct : Json.Decode.Decoder Struct
Declares how to decode a Struct
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeTimestamp : Json.Decode.Decoder Timestamp
Declares how to decode a Timestamp
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeType : Json.Decode.Decoder Type
Declares how to decode a Type
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeUInt32Value : Json.Decode.Decoder UInt32Value
Declares how to decode a UInt32Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeUInt64Value : Json.Decode.Decoder UInt64Value
Declares how to decode a UInt64Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeUninterpretedOption : Json.Decode.Decoder UninterpretedOption
Declares how to decode a UninterpretedOption
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonDecodeValue : Json.Decode.Decoder Value
Declares how to decode a Value
from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.
jsonEncodeAny : Any -> Json.Encode.Value
Encode a Any
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeApi : Api -> Json.Encode.Value
Encode a Api
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeBoolValue : BoolValue -> Json.Encode.Value
Encode a BoolValue
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeBytesValue : BytesValue -> Json.Encode.Value
Encode a BytesValue
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeDescriptorProto : DescriptorProto -> Json.Encode.Value
Encode a DescriptorProto
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeDoubleValue : DoubleValue -> Json.Encode.Value
Encode a DoubleValue
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeDuration : Duration -> Json.Encode.Value
Encode a Duration
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeEmpty : Empty -> Json.Encode.Value
Encode a Empty
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeEnum : Enum -> Json.Encode.Value
Encode a Enum
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeEnumDescriptorProto : EnumDescriptorProto -> Json.Encode.Value
Encode a EnumDescriptorProto
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeEnumOptions : EnumOptions -> Json.Encode.Value
Encode a EnumOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeEnumValue : EnumValue -> Json.Encode.Value
Encode a EnumValue
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeEnumValueDescriptorProto : EnumValueDescriptorProto -> Json.Encode.Value
Encode a EnumValueDescriptorProto
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeEnumValueOptions : EnumValueOptions -> Json.Encode.Value
Encode a EnumValueOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeExtensionRangeOptions : ExtensionRangeOptions -> Json.Encode.Value
Encode a ExtensionRangeOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeField : Field -> Json.Encode.Value
Encode a Field
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeFieldDescriptorProto : FieldDescriptorProto -> Json.Encode.Value
Encode a FieldDescriptorProto
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeFieldMask : FieldMask -> Json.Encode.Value
Encode a FieldMask
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeFieldOptions : FieldOptions -> Json.Encode.Value
Encode a FieldOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeFileDescriptorProto : FileDescriptorProto -> Json.Encode.Value
Encode a FileDescriptorProto
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeFileDescriptorSet : FileDescriptorSet -> Json.Encode.Value
Encode a FileDescriptorSet
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeFileOptions : FileOptions -> Json.Encode.Value
Encode a FileOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeFloatValue : FloatValue -> Json.Encode.Value
Encode a FloatValue
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeGeneratedCodeInfo : GeneratedCodeInfo -> Json.Encode.Value
Encode a GeneratedCodeInfo
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeInt32Value : Int32Value -> Json.Encode.Value
Encode a Int32Value
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeInt64Value : Int64Value -> Json.Encode.Value
Encode a Int64Value
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeListValue : ListValue -> Json.Encode.Value
Encode a ListValue
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeMessageOptions : MessageOptions -> Json.Encode.Value
Encode a MessageOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeMethod : Method -> Json.Encode.Value
Encode a Method
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeMethodDescriptorProto : MethodDescriptorProto -> Json.Encode.Value
Encode a MethodDescriptorProto
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeMethodOptions : MethodOptions -> Json.Encode.Value
Encode a MethodOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeMixin : Mixin -> Json.Encode.Value
Encode a Mixin
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeOneofDescriptorProto : OneofDescriptorProto -> Json.Encode.Value
Encode a OneofDescriptorProto
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeOneofOptions : OneofOptions -> Json.Encode.Value
Encode a OneofOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeOption : Option -> Json.Encode.Value
Encode a Option
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeServiceDescriptorProto : ServiceDescriptorProto -> Json.Encode.Value
Encode a ServiceDescriptorProto
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeServiceOptions : ServiceOptions -> Json.Encode.Value
Encode a ServiceOptions
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeSourceCodeInfo : SourceCodeInfo -> Json.Encode.Value
Encode a SourceCodeInfo
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeSourceContext : SourceContext -> Json.Encode.Value
Encode a SourceContext
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeStringValue : StringValue -> Json.Encode.Value
Encode a StringValue
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeStruct : Struct -> Json.Encode.Value
Encode a Struct
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeTimestamp : Timestamp -> Json.Encode.Value
Encode a Timestamp
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeType : Type -> Json.Encode.Value
Encode a Type
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeUInt32Value : UInt32Value -> Json.Encode.Value
Encode a UInt32Value
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeUInt64Value : UInt64Value -> Json.Encode.Value
Encode a UInt64Value
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeUninterpretedOption : UninterpretedOption -> Json.Encode.Value
Encode a UninterpretedOption
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
jsonEncodeValue : Value -> Json.Encode.Value
Encode a Value
to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json
unwrapDescriptorProto : DescriptorProto_ -> DescriptorProto
Unwrap a DescriptorProto
from its wrapper DescriptorProto_.
unwrapListValue : ListValue_ -> ListValue
Unwrap a ListValue
from its wrapper ListValue_.
unwrapValue : Value_ -> Value
Unwrap a Value
from its wrapper Value_.
wrapDescriptorProto : DescriptorProto -> DescriptorProto_
Wrap a DescriptorProto
into its wrapper DescriptorProto_.
wrapListValue : ListValue -> ListValue_
Wrap a ListValue
into its wrapper ListValue_.
wrapValue : Value -> Value_
Wrap a Value
into its wrapper Value_.