anmolitor / elm-protoc-types / Proto.Google.Protobuf

This file was automatically generated by

To run it, add a dependency via elm install on elm-protocol-buffers version latest or higher.

Protocol Buffers - Google's data interchange format Copyright 2008 Google Inc. All rights reserved. https://developers.google.com/protocol-buffers/

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Author: kenton


type alias Any =
Internals_.Proto__Google__Protobuf__Any

Any contains an arbitrary serialized protocol buffer message along with a URL that describes the type of the serialized message.

Protobuf library provides support to pack/unpack Any values in the form of utility functions or additional generated methods of the Any type.

Example 1: Pack and unpack a message in C++.

 Foo foo = ...;
 Any any;
 any.PackFrom(foo);
 ...
 if (any.UnpackTo(&foo)) {
   ...
 }

Example 2: Pack and unpack a message in Java.

 Foo foo = ...;
 Any any = Any.pack(foo);
 ...
 if (any.is(Foo.class)) {
   foo = any.unpack(Foo.class);
 }
 // or ...
 if (any.isSameTypeAs(Foo.getDefaultInstance())) {
   foo = any.unpack(Foo.getDefaultInstance());
 }

Example 3: Pack and unpack a message in Python.

 foo = Foo(...)
 any = Any()
 any.Pack(foo)
 ...
 if any.Is(Foo.DESCRIPTOR):
   any.Unpack(foo)
   ...

Example 4: Pack and unpack a message in Go

  foo := &pb.Foo{...}
  any, err := anypb.New(foo)
  if err != nil {
    ...
  }
  ...
  foo := &pb.Foo{}
  if err := any.UnmarshalTo(foo); err != nil {
    ...
  }

The pack methods provided by protobuf library will by default use 'type.googleapis.com/full.type.name' as the type URL and the unpack methods only use the fully qualified type name after the last '/' in the type URL, for example "foo.bar.com/x/y.z" will yield type name "y.z".

JSON

The JSON representation of an Any value uses the regular representation of the deserialized, embedded message, with an additional field @type which contains the type URL. Example:

 package google.profile;
 message Person {
   string first_name = 1;
   string last_name = 2;
 }

 {
   "@type": "type.googleapis.com/google.profile.Person",
   "firstName": <string>,
   "lastName": <string>
 }

If the embedded message type is well-known and has a custom JSON representation, that representation will be embedded adding a field value which holds the custom JSON in addition to the @type field. Example (for message [google.protobuf.Duration]):

 {
   "@type": "type.googleapis.com/google.protobuf.Duration",
   "value": "1.212s"
 }

Fields

typeUrl

A URL/resource name that uniquely identifies the type of the serialized protocol buffer message. This string must contain at least one "/" character. The last segment of the URL's path must represent the fully qualified name of the type (as in path/google.protobuf.Duration). The name should be in a canonical form (e.g., leading "." is not accepted).

In practice, teams usually precompile into the binary all types that they expect it to use in the context of Any. However, for URLs which use the scheme http, https, or no scheme, one can optionally set up a type server that maps type URLs to message definitions as follows:

Note: this functionality is not currently available in the official protobuf release, and it is not used for type URLs beginning with type.googleapis.com.

Schemes other than http, https (or the empty scheme) might be used with implementation specific semantics.

value

Must be a valid serialized protocol buffer of the above specified type.


type alias Api =
Internals_.Proto__Google__Protobuf__Api

Api is a light-weight descriptor for an API Interface.

Interfaces are also described as "protocol buffer services" in some contexts, such as by the "service" keyword in a .proto file, but they are different from API Services, which represent a concrete implementation of an interface as opposed to simply a description of methods and bindings. They are also sometimes simply referred to as "APIs" in other contexts, such as the name of this message itself. See https://cloud.google.com/apis/design/glossary for detailed terminology.

Fields

name

The fully qualified name of this interface, including package name followed by the interface's simple name.

methods

The methods of this interface, in unspecified order.

options

Any metadata attached to the interface.

version

A version string for this interface. If specified, must have the form major-version.minor-version, as in 1.10. If the minor version is omitted, it defaults to zero. If the entire version field is empty, the major version is derived from the package name, as outlined below. If the field is not empty, the version in the package name will be verified to be consistent with what is provided here.

The versioning schema uses semantic versioning where the major version number indicates a breaking change and the minor version an additive, non-breaking change. Both version numbers are signals to users what to expect from different versions, and should be carefully chosen based on the product plan.

The major version is also reflected in the package name of the interface, which must end in v<major-version>, as in google.feature.v1. For major versions 0 and 1, the suffix can be omitted. Zero major versions must only be used for experimental, non-GA interfaces.

sourceContext

Source context for the protocol buffer service represented by this message.

mixins

Included interfaces. See [Mixin].

syntax

The source syntax of the service.


type alias BoolValue =
Internals_.Proto__Google__Protobuf__BoolValue

Wrapper message for bool.

The JSON representation for BoolValue is JSON true and false.

Fields

value

The bool value.


type alias BytesValue =
Internals_.Proto__Google__Protobuf__BytesValue

Wrapper message for bytes.

The JSON representation for BytesValue is JSON string.

Fields

value

The bytes value.


type alias DescriptorProto =
Internals_.Proto__Google__Protobuf__DescriptorProto

Describes a message type.

Fields

reservedName

Reserved field names, which may not be used by fields in the same message. A given name may only be reserved once.


type alias DescriptorProto_ =
Internals_.Proto__Google__Protobuf__DescriptorProto_

Type wrapper for alias type DescriptorProto to avoid unlimited recursion.

For a more in-depth explanation why we need this, read this: https://github.com/elm/compiler/blob/master/hints/recursive-alias.md.


type alias DoubleValue =
Internals_.Proto__Google__Protobuf__DoubleValue

Wrapper message for double.

The JSON representation for DoubleValue is JSON number.

Fields

value

The double value.


type alias Duration =
Internals_.Proto__Google__Protobuf__Duration

A Duration represents a signed, fixed-length span of time represented as a count of seconds and fractions of seconds at nanosecond resolution. It is independent of any calendar and concepts like "day" or "month". It is related to Timestamp in that the difference between two Timestamp values is a Duration and it can be added or subtracted from a Timestamp. Range is approximately +-10,000 years.

Examples

Example 1: Compute Duration from two Timestamps in pseudo code.

 Timestamp start = ...;
 Timestamp end = ...;
 Duration duration = ...;

 duration.seconds = end.seconds - start.seconds;
 duration.nanos = end.nanos - start.nanos;

 if (duration.seconds < 0 && duration.nanos > 0) {
   duration.seconds += 1;
   duration.nanos -= 1000000000;
 } else if (duration.seconds > 0 && duration.nanos < 0) {
   duration.seconds -= 1;
   duration.nanos += 1000000000;
 }

Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.

 Timestamp start = ...;
 Duration duration = ...;
 Timestamp end = ...;

 end.seconds = start.seconds + duration.seconds;
 end.nanos = start.nanos + duration.nanos;

 if (end.nanos < 0) {
   end.seconds -= 1;
   end.nanos += 1000000000;
 } else if (end.nanos >= 1000000000) {
   end.seconds += 1;
   end.nanos -= 1000000000;
 }

Example 3: Compute Duration from datetime.timedelta in Python.

 td = datetime.timedelta(days=3, minutes=10)
 duration = Duration()
 duration.FromTimedelta(td)

JSON Mapping

In JSON format, the Duration type is encoded as a string rather than an object, where the string ends in the suffix "s" (indicating seconds) and is preceded by the number of seconds, with nanoseconds expressed as fractional seconds. For example, 3 seconds with 0 nanoseconds should be encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should be expressed in JSON format as "3.000000001s", and 3 seconds and 1 microsecond should be expressed in JSON format as "3.000001s".

Fields

seconds

Signed seconds of the span of time. Must be from -315,576,000,000 to +315,576,000,000 inclusive. Note: these bounds are computed from: 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years

nanos

Signed fractions of a second at nanosecond resolution of the span of time. Durations less than one second are represented with a 0 seconds field and a positive or negative nanos field. For durations of one second or more, a non-zero value for the nanos field must be of the same sign as the seconds field. Must be from -999,999,999 to +999,999,999 inclusive.


type alias Empty =
Internals_.Proto__Google__Protobuf__Empty

A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:

 service Foo {
   rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
 }


type alias Enum =
Internals_.Proto__Google__Protobuf__Enum

Enum type definition.

Fields

name

Enum type name.

enumvalue

Enum value definitions.

options

Protocol buffer options.

sourceContext

The source context.

syntax

The source syntax.


type alias EnumDescriptorProto =
Internals_.Proto__Google__Protobuf__EnumDescriptorProto

Describes an enum type.

Fields

reservedRange

Range of reserved numeric values. Reserved numeric values may not be used by enum values in the same enum declaration. Reserved ranges may not overlap.

reservedName

Reserved enum value names, which may not be reused. A given name may only be reserved once.


type alias EnumOptions =
Internals_.Proto__Google__Protobuf__EnumOptions

Fields

allowAlias

Set this option to true to allow mapping different tag names to the same value.

deprecated

Is this enum deprecated? Depending on the target platform, this can emit Deprecated annotations for the enum, or it will be completely ignored; in the very least, this is a formalization for deprecating enums.

deprecatedLegacyJsonFieldConflicts

Enable the legacy handling of JSON field name conflicts. This lowercases and strips underscored from the fields before comparison in proto3 only. The new behavior takes json_name into account and applies to proto2 as well. TODO(b/261750190) Remove this legacy behavior once downstream teams have had time to migrate.

uninterpretedOption

The parser stores options it doesn't recognize here. See above.


type alias EnumValue =
Internals_.Proto__Google__Protobuf__EnumValue

Enum value definition.

Fields

name

Enum value name.

number

Enum value number.

options

Protocol buffer options.


type alias EnumValueDescriptorProto =
Internals_.Proto__Google__Protobuf__EnumValueDescriptorProto

Describes a value within an enum.


type alias EnumValueOptions =
Internals_.Proto__Google__Protobuf__EnumValueOptions

Fields

deprecated

Is this enum value deprecated? Depending on the target platform, this can emit Deprecated annotations for the enum value, or it will be completely ignored; in the very least, this is a formalization for deprecating enum values.

uninterpretedOption

The parser stores options it doesn't recognize here. See above.


type alias ExtensionRangeOptions =
Internals_.Proto__Google__Protobuf__ExtensionRangeOptions

Fields

uninterpretedOption

The parser stores options it doesn't recognize here. See above.


type alias Field =
Internals_.Proto__Google__Protobuf__Field

A single field of a message type.

Fields

kind

The field type.

cardinality

The field cardinality.

number

The field number.

name

The field name.

typeUrl

The field type URL, without the scheme, for message or enumeration types. Example: "type.googleapis.com/google.protobuf.Timestamp".

oneofIndex

The index of the field type in Type.oneofs, for message or enumeration types. The first type has index 1; zero means the type is not in the list.

packed

Whether to use alternative packed wire representation.

options

The protocol buffer options.

jsonName

The field JSON name.

defaultValue

The string value of the default value of this field. Proto2 syntax only.


type alias FieldDescriptorProto =
Internals_.Proto__Google__Protobuf__FieldDescriptorProto

Describes a field within a message.

Fields

type_

If type_name is set, this need not be set. If both this and type_name are set, this must be one of TYPE_ENUM, TYPE_MESSAGE or TYPE_GROUP.

typeName

For message and enum types, this is the name of the type. If the name starts with a '.', it is fully-qualified. Otherwise, C++-like scoping rules are used to find the type (i.e. first the nested types within this message are searched, then within the parent, on up to the root namespace).

extendee

For extensions, this is the name of the type being extended. It is resolved in the same manner as type_name.

defaultValue

For numeric types, contains the original text representation of the value. For booleans, "true" or "false". For strings, contains the default text contents (not escaped in any way). For bytes, contains the C escaped value. All bytes >= 128 are escaped.

oneofIndex

If set, gives the index of a oneof in the containing type's oneof_decl list. This field is a member of that oneof.

jsonName

JSON name of this field. The value is set by protocol compiler. If the user has set a "json_name" option on this field, that option's value will be used. Otherwise, it's deduced from the field's name by converting it to camelCase.

proto3Optional

If true, this is a proto3 "optional". When a proto3 field is optional, it tracks presence regardless of field type.

When proto3_optional is true, this field must be belong to a oneof to signal to old proto3 clients that presence is tracked for this field. This oneof is known as a "synthetic" oneof, and this field must be its sole member (each proto3 optional field gets its own synthetic oneof). Synthetic oneofs exist in the descriptor only, and do not generate any API. Synthetic oneofs must be ordered after all "real" oneofs.

For message fields, proto3_optional doesn't create any semantic change, since non-repeated message fields always track presence. However it still indicates the semantic detail of whether the user wrote "optional" or not. This can be useful for round-tripping the .proto file. For consistency we give message fields a synthetic oneof also, even though it is not required to track presence. This is especially important because the parser can't tell if a field is a message or an enum, so it must always create a synthetic oneof.

Proto2 optional fields do not set this flag, because they already indicate optional with LABEL_OPTIONAL.


type alias FieldMask =
Internals_.Proto__Google__Protobuf__FieldMask

FieldMask represents a set of symbolic field paths, for example:

 paths: "f.a"
 paths: "f.b.d"

Here f represents a field in some root message, a and b fields in the message found in f, and d a field found in the message in f.b.

Field masks are used to specify a subset of fields that should be returned by a get operation or modified by an update operation. Field masks also have a custom JSON encoding (see below).

Field Masks in Projections

When used in the context of a projection, a response message or sub-message is filtered by the API to only contain those fields as specified in the mask. For example, if the mask in the previous example is applied to a response message as follows:

 f {
   a : 22
   b {
     d : 1
     x : 2
   }
   y : 13
 }
 z: 8

The result will not contain specific values for fields x,y and z (their value will be set to the default, and omitted in proto text output):

 f {
   a : 22
   b {
     d : 1
   }
 }

A repeated field is not allowed except at the last position of a paths string.

If a FieldMask object is not present in a get operation, the operation applies to all fields (as if a FieldMask of all fields had been specified).

Note that a field mask does not necessarily apply to the top-level response message. In case of a REST get operation, the field mask applies directly to the response, but in case of a REST list operation, the mask instead applies to each individual message in the returned resource list. In case of a REST custom method, other definitions may be used. Where the mask applies will be clearly documented together with its declaration in the API. In any case, the effect on the returned resource/resources is required behavior for APIs.

Field Masks in Update Operations

A field mask in update operations specifies which fields of the targeted resource are going to be updated. The API is required to only change the values of the fields as specified in the mask and leave the others untouched. If a resource is passed in to describe the updated values, the API ignores the values of all fields not covered by the mask.

If a repeated field is specified for an update operation, new values will be appended to the existing repeated field in the target resource. Note that a repeated field is only allowed in the last position of a paths string.

If a sub-message is specified in the last position of the field mask for an update operation, then new value will be merged into the existing sub-message in the target resource.

For example, given the target message:

 f {
   b {
     d: 1
     x: 2
   }
   c: [1]
 }

And an update message:

 f {
   b {
     d: 10
   }
   c: [2]
 }

then if the field mask is:

paths: ["f.b", "f.c"]

then the result will be:

 f {
   b {
     d: 10
     x: 2
   }
   c: [1, 2]
 }

An implementation may provide options to override this default behavior for repeated and message fields.

In order to reset a field's value to the default, the field must be in the mask and set to the default value in the provided resource. Hence, in order to reset all fields of a resource, provide a default instance of the resource and set all fields in the mask, or do not provide a mask as described below.

If a field mask is not present on update, the operation applies to all fields (as if a field mask of all fields has been specified). Note that in the presence of schema evolution, this may mean that fields the client does not know and has therefore not filled into the request will be reset to their default. If this is unwanted behavior, a specific service may require a client to always specify a field mask, producing an error if not.

As with get operations, the location of the resource which describes the updated values in the request message depends on the operation kind. In any case, the effect of the field mask is required to be honored by the API.

Considerations for HTTP REST

The HTTP kind of an update operation which uses a field mask must be set to PATCH instead of PUT in order to satisfy HTTP semantics (PUT must only be used for full updates).

JSON Encoding of Field Masks

In JSON, a field mask is encoded as a single string where paths are separated by a comma. Fields name in each path are converted to/from lower-camel naming conventions.

As an example, consider the following message declarations:

 message Profile {
   User user = 1;
   Photo photo = 2;
 }
 message User {
   string display_name = 1;
   string address = 2;
 }

In proto a field mask for Profile may look as such:

 mask {
   paths: "user.display_name"
   paths: "photo"
 }

In JSON, the same mask is represented as below:

 {
   mask: "user.displayName,photo"
 }

Field Masks and Oneof Fields

Field masks treat fields in oneofs just as regular fields. Consider the following message:

 message SampleMessage {
   oneof test_oneof {
     string name = 4;
     SubMessage sub_message = 9;
   }
 }

The field mask can be:

 mask {
   paths: "name"
 }

Or:

 mask {
   paths: "sub_message"
 }

Note that oneof type names ("test_oneof" in this case) cannot be used in paths.

Field Mask Verification

The implementation of any API method which has a FieldMask type field in the request should verify the included field paths, and return an INVALID_ARGUMENT error if any path is unmappable.

Fields

paths

The set of field mask paths.


type alias FieldOptions =
Internals_.Proto__Google__Protobuf__FieldOptions

Fields

ctype

The ctype option instructs the C++ code generator to use a different representation of the field than it normally would. See the specific options below. This option is not yet implemented in the open source release -- sorry, we'll try to include it in a future version!

packed

The packed option can be enabled for repeated primitive fields to enable a more efficient representation on the wire. Rather than repeatedly writing the tag and type for each element, the entire array is encoded as a single length-delimited blob. In proto3, only explicit setting it to false will avoid using packed encoding.

jstype

The jstype option determines the JavaScript type used for values of the field. The option is permitted only for 64 bit integral and fixed types (int64, uint64, sint64, fixed64, sfixed64). A field with jstype JS_STRING is represented as JavaScript string, which avoids loss of precision that can happen when a large value is converted to a floating point JavaScript. Specifying JS_NUMBER for the jstype causes the generated JavaScript code to use the JavaScript "number" type. The behavior of the default option JS_NORMAL is implementation dependent.

This option is an enum to permit additional types to be added, e.g. goog.math.Integer.

lazy

Should this field be parsed lazily? Lazy applies only to message-type fields. It means that when the outer message is initially parsed, the inner message's contents will not be parsed but instead stored in encoded form. The inner message will actually be parsed when it is first accessed.

This is only a hint. Implementations are free to choose whether to use eager or lazy parsing regardless of the value of this option. However, setting this option true suggests that the protocol author believes that using lazy parsing on this field is worth the additional bookkeeping overhead typically needed to implement it.

This option does not affect the public interface of any generated code; all method signatures remain the same. Furthermore, thread-safety of the interface is not affected by this option; const methods remain safe to call from multiple threads concurrently, while non-const methods continue to require exclusive access.

Note that implementations may choose not to check required fields within a lazy sub-message. That is, calling IsInitialized() on the outer message may return true even if the inner message has missing required fields. This is necessary because otherwise the inner message would have to be parsed in order to perform the check, defeating the purpose of lazy parsing. An implementation which chooses not to check required fields must be consistent about it. That is, for any particular sub-message, the implementation must either always check its required fields, or never check its required fields, regardless of whether or not the message has been parsed.

As of May 2022, lazy verifies the contents of the byte stream during parsing. An invalid byte stream will cause the overall parsing to fail.

unverifiedLazy

unverified_lazy does no correctness checks on the byte stream. This should only be used where lazy with verification is prohibitive for performance reasons.

deprecated

Is this field deprecated? Depending on the target platform, this can emit Deprecated annotations for accessors, or it will be completely ignored; in the very least, this is a formalization for deprecating fields.

weak

For Google-internal migration only. Do not use.

debugRedact

Indicate that the field value should not be printed out when using debug formats, e.g. when the field contains sensitive credentials.

uninterpretedOption

The parser stores options it doesn't recognize here. See above.


type alias FileDescriptorProto =
Internals_.Proto__Google__Protobuf__FileDescriptorProto

Describes a complete .proto file.

Fields

name

file name, relative to root of source tree

package

e.g. "foo", "foo.bar", etc.

dependency

Names of files imported by this file.

publicDependency

Indexes of the public imported files in the dependency list above.

weakDependency

Indexes of the weak imported files in the dependency list. For Google-internal migration only. Do not use.

messageType

All top-level definitions in this file.

sourceCodeInfo

This field contains optional information about the original source code. You may safely remove this entire field without harming runtime functionality of the descriptors -- the information is needed only by development tools.

syntax

The syntax of the proto file. The supported values are "proto2", "proto3", and "editions".

If edition is present, this value must be "editions".

edition

The edition of the proto file, which is an opaque string.


type alias FileDescriptorSet =
Internals_.Proto__Google__Protobuf__FileDescriptorSet

The protocol compiler can output a FileDescriptorSet containing the .proto files it parses.


type alias FileOptions =
Internals_.Proto__Google__Protobuf__FileOptions

=================================================================== Options

Each of the definitions above may have "options" attached. These are just annotations which may cause code to be generated slightly differently or may contain hints for code that manipulates protocol messages.

Clients may define custom options as extensions of the _Options messages. These extensions may not yet be known at parsing time, so the parser cannot store the values in them. Instead it stores them in a field in the _Options message called uninterpreted_option. This field must have the same name across all *Options messages. We then use this field to populate the extensions when we build a descriptor, at which point all protos have been parsed and so all extensions are known.

Extension numbers for custom options may be chosen as follows:

Fields

javaPackage

Sets the Java package where classes generated from this .proto will be placed. By default, the proto package is used, but this is often inappropriate because proto packages do not normally start with backwards domain names.

javaOuterClassname

Controls the name of the wrapper Java class generated for the .proto file. That class will always contain the .proto file's getDescriptor() method as well as any top-level extensions defined in the .proto file. If java_multiple_files is disabled, then all the other classes from the .proto file will be nested inside the single wrapper outer class.

javaMultipleFiles

If enabled, then the Java code generator will generate a separate .java file for each top-level message, enum, and service defined in the .proto file. Thus, these types will not be nested inside the wrapper class named by java_outer_classname. However, the wrapper class will still be generated to contain the file's getDescriptor() method as well as any top-level extensions defined in the file.

javaGenerateEqualsAndHash

This option does nothing.

javaStringCheckUtf8

If set true, then the Java2 code generator will generate code that throws an exception whenever an attempt is made to assign a non-UTF-8 byte sequence to a string field. Message reflection will do the same. However, an extension field still accepts non-UTF-8 byte sequences. This option has no effect on when used with the lite runtime.

goPackage

Sets the Go package where structs generated from this .proto will be placed. If omitted, the Go package will be derived from the following:

ccGenericServices

Should generic services be generated in each language? "Generic" services are not specific to any particular RPC system. They are generated by the main code generators in each language (without additional plugins). Generic services were the only kind of service generation supported by early versions of google.protobuf.

Generic services are now considered deprecated in favor of using plugins that generate code specific to your particular RPC system. Therefore, these default to false. Old code which depends on generic services should explicitly set them to true.

deprecated

Is this file deprecated? Depending on the target platform, this can emit Deprecated annotations for everything in the file, or it will be completely ignored; in the very least, this is a formalization for deprecating files.

ccEnableArenas

Enables the use of arenas for the proto messages in this file. This applies only to generated classes for C++.

objcClassPrefix

Sets the objective c class prefix which is prepended to all objective c generated classes from this .proto. There is no default.

csharpNamespace

Namespace for generated classes; defaults to the package.

swiftPrefix

By default Swift generators will take the proto package and CamelCase it replacing '.' with underscore and use that to prefix the types/symbols defined. When this options is provided, they will use this value instead to prefix the types/symbols defined.

phpClassPrefix

Sets the php class prefix which is prepended to all php generated classes from this .proto. Default is empty.

phpNamespace

Use this option to change the namespace of php generated classes. Default is empty. When this option is empty, the package name will be used for determining the namespace.

phpMetadataNamespace

Use this option to change the namespace of php generated metadata classes. Default is empty. When this option is empty, the proto file name will be used for determining the namespace.

rubyPackage

Use this option to change the package of ruby generated classes. Default is empty. When this option is not set, the package name will be used for determining the ruby package.

uninterpretedOption

The parser stores options it doesn't recognize here. See the documentation for the "Options" section above.


type alias FloatValue =
Internals_.Proto__Google__Protobuf__FloatValue

Wrapper message for float.

The JSON representation for FloatValue is JSON number.

Fields

value

The float value.


type alias GeneratedCodeInfo =
Internals_.Proto__Google__Protobuf__GeneratedCodeInfo

Describes the relationship between generated code and its original source file. A GeneratedCodeInfo message is associated with only one generated source file, but may contain references to different source .proto files.

Fields

annotation

An Annotation connects some span of text in generated code to an element of its generating .proto file.


type alias Int32Value =
Internals_.Proto__Google__Protobuf__Int32Value

Wrapper message for int32.

The JSON representation for Int32Value is JSON number.

Fields

value

The int32 value.


type alias Int64Value =
Internals_.Proto__Google__Protobuf__Int64Value

Wrapper message for int64.

The JSON representation for Int64Value is JSON string.

Fields

value

The int64 value.


type alias ListValue =
Internals_.Proto__Google__Protobuf__ListValue

ListValue is a wrapper around a repeated field of values.

The JSON representation for ListValue is JSON array.

Fields

values

Repeated field of dynamically typed values.


type alias ListValue_ =
Internals_.Proto__Google__Protobuf__ListValue_

Type wrapper for alias type ListValue to avoid unlimited recursion.

For a more in-depth explanation why we need this, read this: https://github.com/elm/compiler/blob/master/hints/recursive-alias.md.


type alias MessageOptions =
Internals_.Proto__Google__Protobuf__MessageOptions

Fields

messageSetWireFormat

Set true to use the old proto1 MessageSet wire format for extensions. This is provided for backwards-compatibility with the MessageSet wire format. You should not use this for any other reason: It's less efficient, has fewer features, and is more complicated.

The message must be defined exactly as follows: message Foo { option message_set_wire_format = true; extensions 4 to max; } Note that the message cannot have any defined fields; MessageSets only have extensions.

All extensions of your type must be singular messages; e.g. they cannot be int32s, enums, or repeated messages.

Because this is an option, the above two restrictions are not enforced by the protocol compiler.

noStandardDescriptorAccessor

Disables the generation of the standard "descriptor()" accessor, which can conflict with a field of the same name. This is meant to make migration from proto1 easier; new code should avoid fields named "descriptor".

deprecated

Is this message deprecated? Depending on the target platform, this can emit Deprecated annotations for the message, or it will be completely ignored; in the very least, this is a formalization for deprecating messages.

mapEntry

NOTE: Do not set the option in .proto files. Always use the maps syntax instead. The option should only be implicitly set by the proto compiler parser.

Whether the message is an automatically generated map entry type for the maps field.

For maps fields: map map_field = 1; The parsed descriptor looks like: message MapFieldEntry { option map_entry = true; optional KeyType key = 1; optional ValueType value = 2; } repeated MapFieldEntry map_field = 1;

Implementations may choose not to generate the map_entry=true message, but use a native map in the target language to hold the keys and values. The reflection APIs in such implementations still need to work as if the field is a repeated message field.

deprecatedLegacyJsonFieldConflicts

Enable the legacy handling of JSON field name conflicts. This lowercases and strips underscored from the fields before comparison in proto3 only. The new behavior takes json_name into account and applies to proto2 as well.

This should only be used as a temporary measure against broken builds due to the change in behavior for JSON field name conflicts.

TODO(b/261750190) This is legacy behavior we plan to remove once downstream teams have had time to migrate.

uninterpretedOption

The parser stores options it doesn't recognize here. See above.


type alias Method =
Internals_.Proto__Google__Protobuf__Method

Method represents a method of an API interface.

Fields

name

The simple name of this method.

requestTypeUrl

A URL of the input message type.

requestStreaming

If true, the request is streamed.

responseTypeUrl

The URL of the output message type.

responseStreaming

If true, the response is streamed.

options

Any metadata attached to the method.

syntax

The source syntax of this method.


type alias MethodDescriptorProto =
Internals_.Proto__Google__Protobuf__MethodDescriptorProto

Describes a method of a service.

Fields

inputType

Input and output type names. These are resolved in the same way as FieldDescriptorProto.type_name, but must refer to a message type.

clientStreaming

Identifies if client streams multiple client messages

serverStreaming

Identifies if server streams multiple server messages


type alias MethodOptions =
Internals_.Proto__Google__Protobuf__MethodOptions

Fields

deprecated

Note: Field numbers 1 through 32 are reserved for Google's internal RPC framework. We apologize for hoarding these numbers to ourselves, but we were already using them long before we decided to release Protocol Buffers.

Is this method deprecated? Depending on the target platform, this can emit Deprecated annotations for the method, or it will be completely ignored; in the very least, this is a formalization for deprecating methods.

uninterpretedOption

The parser stores options it doesn't recognize here. See above.


type alias Mixin =
Internals_.Proto__Google__Protobuf__Mixin

Declares an API Interface to be included in this interface. The including interface must redeclare all the methods from the included interface, but documentation and options are inherited as follows:

Example of a simple mixin:

 package google.acl.v1;
 service AccessControl {
   // Get the underlying ACL object.
   rpc GetAcl(GetAclRequest) returns (Acl) {
     option (google.api.http).get = "/v1/{resource=**}:getAcl";
   }
 }

 package google.storage.v2;
 service Storage {
   rpc GetAcl(GetAclRequest) returns (Acl);

   // Get a data record.
   rpc GetData(GetDataRequest) returns (Data) {
     option (google.api.http).get = "/v2/{resource=**}";
   }
 }

Example of a mixin configuration:

 apis:
 - name: google.storage.v2.Storage
   mixins:
   - name: google.acl.v1.AccessControl

The mixin construct implies that all methods in AccessControl are also declared with same name and request/response types in Storage. A documentation generator or annotation processor will see the effective Storage.GetAcl method after inheriting documentation and annotations as follows:

 service Storage {
   // Get the underlying ACL object.
   rpc GetAcl(GetAclRequest) returns (Acl) {
     option (google.api.http).get = "/v2/{resource=**}:getAcl";
   }
   ...
 }

Note how the version in the path pattern changed from v1 to v2.

If the root field in the mixin is specified, it should be a relative path under which inherited HTTP paths are placed. Example:

 apis:
 - name: google.storage.v2.Storage
   mixins:
   - name: google.acl.v1.AccessControl
     root: acls

This implies the following inherited HTTP annotation:

 service Storage {
   // Get the underlying ACL object.
   rpc GetAcl(GetAclRequest) returns (Acl) {
     option (google.api.http).get = "/v2/acls/{resource=**}:getAcl";
   }
   ...
 }

Fields

name

The fully qualified name of the interface which is included.

root

If non-empty specifies a path under which inherited HTTP paths are rooted.


type alias OneofDescriptorProto =
Internals_.Proto__Google__Protobuf__OneofDescriptorProto

Describes a oneof.


type alias OneofOptions =
Internals_.Proto__Google__Protobuf__OneofOptions

Fields

uninterpretedOption

The parser stores options it doesn't recognize here. See above.


type alias Option =
Internals_.Proto__Google__Protobuf__Option

A protocol buffer option, which can be attached to a message, field, enumeration, etc.

Fields

name

The option's name. For protobuf built-in options (options defined in descriptor.proto), this is the short name. For example, "map_entry". For custom options, it should be the fully-qualified name. For example, "google.api.http".

value

The option's value packed in an Any message. If the value is a primitive, the corresponding wrapper type defined in google/protobuf/wrappers.proto should be used. If the value is an enum, it should be stored as an int32 value using the google.protobuf.Int32Value type.


type alias ServiceDescriptorProto =
Internals_.Proto__Google__Protobuf__ServiceDescriptorProto

Describes a service.


type alias ServiceOptions =
Internals_.Proto__Google__Protobuf__ServiceOptions

Fields

deprecated

Note: Field numbers 1 through 32 are reserved for Google's internal RPC framework. We apologize for hoarding these numbers to ourselves, but we were already using them long before we decided to release Protocol Buffers.

Is this service deprecated? Depending on the target platform, this can emit Deprecated annotations for the service, or it will be completely ignored; in the very least, this is a formalization for deprecating services.

uninterpretedOption

The parser stores options it doesn't recognize here. See above.


type alias SourceCodeInfo =
Internals_.Proto__Google__Protobuf__SourceCodeInfo

=================================================================== Optional source code info

Encapsulates information about the original source file from which a FileDescriptorProto was generated.

Fields

location

A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools.

For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1).

Notes:


type alias SourceContext =
Internals_.Proto__Google__Protobuf__SourceContext

SourceContext represents information about the source of a protobuf element, like the file in which it is defined.

Fields

fileName

The path-qualified name of the .proto file that contained the associated protobuf element. For example: "google/protobuf/source_context.proto".


type alias StringValue =
Internals_.Proto__Google__Protobuf__StringValue

Wrapper message for string.

The JSON representation for StringValue is JSON string.

Fields

value

The string value.


type alias Struct =
Internals_.Proto__Google__Protobuf__Struct

Struct represents a structured data value, consisting of fields which map to dynamically typed values. In some languages, Struct might be supported by a native representation. For example, in scripting languages like JS a struct is represented as an object. The details of that representation are described together with the proto support for the language.

The JSON representation for Struct is JSON object.

Fields

fields

Unordered map of dynamically typed values.


type alias Timestamp =
Internals_.Proto__Google__Protobuf__Timestamp

A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.

All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.

The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.

Examples

Example 1: Compute Timestamp from POSIX time().

 Timestamp timestamp;
 timestamp.set_seconds(time(NULL));
 timestamp.set_nanos(0);

Example 2: Compute Timestamp from POSIX gettimeofday().

 struct timeval tv;
 gettimeofday(&tv, NULL);

 Timestamp timestamp;
 timestamp.set_seconds(tv.tv_sec);
 timestamp.set_nanos(tv.tv_usec * 1000);

Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().

 FILETIME ft;
 GetSystemTimeAsFileTime(&ft);
 UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;

 // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
 // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
 Timestamp timestamp;
 timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
 timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));

Example 4: Compute Timestamp from Java System.currentTimeMillis().

 long millis = System.currentTimeMillis();

 Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
     .setNanos((int) ((millis % 1000) * 1000000)).build();

Example 5: Compute Timestamp from Java Instant.now().

 Instant now = Instant.now();

 Timestamp timestamp =
     Timestamp.newBuilder().setSeconds(now.getEpochSecond())
         .setNanos(now.getNano()).build();

Example 6: Compute Timestamp from current time in Python.

 timestamp = Timestamp()
 timestamp.GetCurrentTime()

JSON Mapping

In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}][.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).

For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.

In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime object can be converted to this format using strftime with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.

Fields

seconds

Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive.

nanos

Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive.


type alias Type =
Internals_.Proto__Google__Protobuf__Type

A protocol buffer message type.

Fields

name

The fully qualified message name.

fields

The list of fields.

oneofs

The list of types appearing in oneof definitions in this type.

options

The protocol buffer options.

sourceContext

The source context.

syntax

The source syntax.


type alias UInt32Value =
Internals_.Proto__Google__Protobuf__UInt32Value

Wrapper message for uint32.

The JSON representation for UInt32Value is JSON number.

Fields

value

The uint32 value.


type alias UInt64Value =
Internals_.Proto__Google__Protobuf__UInt64Value

Wrapper message for uint64.

The JSON representation for UInt64Value is JSON string.

Fields

value

The uint64 value.


type alias UninterpretedOption =
Internals_.Proto__Google__Protobuf__UninterpretedOption

A message representing a option the parser does not recognize. This only appears in options protos created by the compiler::Parser class. DescriptorPool resolves these when building Descriptor objects. Therefore, options protos in descriptor objects (e.g. returned by Descriptor::options(), or produced by Descriptor::CopyTo()) will never have UninterpretedOptions in them.

Fields

identifierValue

The value of the uninterpreted option, in whatever type the tokenizer identified it as during parsing. Exactly one of these should be set.


type alias Value =
Internals_.Proto__Google__Protobuf__Value

Value represents a dynamically typed value which can be either null, a number, a string, a boolean, a recursive struct value, or a list of values. A producer of value is expected to set one of these variants. Absence of any variant indicates an error.

The JSON representation for Value is JSON value.


type alias Value_ =
Internals_.Proto__Google__Protobuf__Value_

Type wrapper for alias type Value to avoid unlimited recursion.

For a more in-depth explanation why we need this, read this: https://github.com/elm/compiler/blob/master/hints/recursive-alias.md.

decodeAny : Protobuf.Decode.Decoder Any

Declares how to decode a Any from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeApi : Protobuf.Decode.Decoder Api

Declares how to decode a Api from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeBoolValue : Protobuf.Decode.Decoder BoolValue

Declares how to decode a BoolValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeBytesValue : Protobuf.Decode.Decoder BytesValue

Declares how to decode a BytesValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeDescriptorProto : Protobuf.Decode.Decoder DescriptorProto

Declares how to decode a DescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeDoubleValue : Protobuf.Decode.Decoder DoubleValue

Declares how to decode a DoubleValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeDuration : Protobuf.Decode.Decoder Duration

Declares how to decode a Duration from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeEmpty : Protobuf.Decode.Decoder Empty

Declares how to decode a Empty from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeEnum : Protobuf.Decode.Decoder Enum

Declares how to decode a Enum from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeEnumDescriptorProto : Protobuf.Decode.Decoder EnumDescriptorProto

Declares how to decode a EnumDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeEnumOptions : Protobuf.Decode.Decoder EnumOptions

Declares how to decode a EnumOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeEnumValue : Protobuf.Decode.Decoder EnumValue

Declares how to decode a EnumValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeEnumValueDescriptorProto : Protobuf.Decode.Decoder EnumValueDescriptorProto

Declares how to decode a EnumValueDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeEnumValueOptions : Protobuf.Decode.Decoder EnumValueOptions

Declares how to decode a EnumValueOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeExtensionRangeOptions : Protobuf.Decode.Decoder ExtensionRangeOptions

Declares how to decode a ExtensionRangeOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeField : Protobuf.Decode.Decoder Field

Declares how to decode a Field from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeFieldDescriptorProto : Protobuf.Decode.Decoder FieldDescriptorProto

Declares how to decode a FieldDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeFieldMask : Protobuf.Decode.Decoder FieldMask

Declares how to decode a FieldMask from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeFieldOptions : Protobuf.Decode.Decoder FieldOptions

Declares how to decode a FieldOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeFileDescriptorProto : Protobuf.Decode.Decoder FileDescriptorProto

Declares how to decode a FileDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeFileDescriptorSet : Protobuf.Decode.Decoder FileDescriptorSet

Declares how to decode a FileDescriptorSet from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeFileOptions : Protobuf.Decode.Decoder FileOptions

Declares how to decode a FileOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeFloatValue : Protobuf.Decode.Decoder FloatValue

Declares how to decode a FloatValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeGeneratedCodeInfo : Protobuf.Decode.Decoder GeneratedCodeInfo

Declares how to decode a GeneratedCodeInfo from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeInt32Value : Protobuf.Decode.Decoder Int32Value

Declares how to decode a Int32Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeInt64Value : Protobuf.Decode.Decoder Int64Value

Declares how to decode a Int64Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeListValue : Protobuf.Decode.Decoder ListValue

Declares how to decode a ListValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeMessageOptions : Protobuf.Decode.Decoder MessageOptions

Declares how to decode a MessageOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeMethod : Protobuf.Decode.Decoder Method

Declares how to decode a Method from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeMethodDescriptorProto : Protobuf.Decode.Decoder MethodDescriptorProto

Declares how to decode a MethodDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeMethodOptions : Protobuf.Decode.Decoder MethodOptions

Declares how to decode a MethodOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeMixin : Protobuf.Decode.Decoder Mixin

Declares how to decode a Mixin from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeOneofDescriptorProto : Protobuf.Decode.Decoder OneofDescriptorProto

Declares how to decode a OneofDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeOneofOptions : Protobuf.Decode.Decoder OneofOptions

Declares how to decode a OneofOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeOption : Protobuf.Decode.Decoder Option

Declares how to decode a Option from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeServiceDescriptorProto : Protobuf.Decode.Decoder ServiceDescriptorProto

Declares how to decode a ServiceDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeServiceOptions : Protobuf.Decode.Decoder ServiceOptions

Declares how to decode a ServiceOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeSourceCodeInfo : Protobuf.Decode.Decoder SourceCodeInfo

Declares how to decode a SourceCodeInfo from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeSourceContext : Protobuf.Decode.Decoder SourceContext

Declares how to decode a SourceContext from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeStringValue : Protobuf.Decode.Decoder StringValue

Declares how to decode a StringValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeStruct : Protobuf.Decode.Decoder Struct

Declares how to decode a Struct from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeTimestamp : Protobuf.Decode.Decoder Timestamp

Declares how to decode a Timestamp from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeType : Protobuf.Decode.Decoder Type

Declares how to decode a Type from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeUInt32Value : Protobuf.Decode.Decoder UInt32Value

Declares how to decode a UInt32Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeUInt64Value : Protobuf.Decode.Decoder UInt64Value

Declares how to decode a UInt64Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeUninterpretedOption : Protobuf.Decode.Decoder UninterpretedOption

Declares how to decode a UninterpretedOption from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

decodeValue : Protobuf.Decode.Decoder Value

Declares how to decode a Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

defaultAny : Any

Default for Any. Should only be used for 'required' decoders as an initial value.

defaultApi : Api

Default for Api. Should only be used for 'required' decoders as an initial value.

defaultBoolValue : BoolValue

Default for BoolValue. Should only be used for 'required' decoders as an initial value.

defaultBytesValue : BytesValue

Default for BytesValue. Should only be used for 'required' decoders as an initial value.

defaultDescriptorProto : DescriptorProto

Default for DescriptorProto. Should only be used for 'required' decoders as an initial value.

defaultDoubleValue : DoubleValue

Default for DoubleValue. Should only be used for 'required' decoders as an initial value.

defaultDuration : Duration

Default for Duration. Should only be used for 'required' decoders as an initial value.

defaultEmpty : Empty

Default for Empty. Should only be used for 'required' decoders as an initial value.

defaultEnum : Enum

Default for Enum. Should only be used for 'required' decoders as an initial value.

defaultEnumDescriptorProto : EnumDescriptorProto

Default for EnumDescriptorProto. Should only be used for 'required' decoders as an initial value.

defaultEnumOptions : EnumOptions

Default for EnumOptions. Should only be used for 'required' decoders as an initial value.

defaultEnumValue : EnumValue

Default for EnumValue. Should only be used for 'required' decoders as an initial value.

defaultEnumValueDescriptorProto : EnumValueDescriptorProto

Default for EnumValueDescriptorProto. Should only be used for 'required' decoders as an initial value.

defaultEnumValueOptions : EnumValueOptions

Default for EnumValueOptions. Should only be used for 'required' decoders as an initial value.

defaultExtensionRangeOptions : ExtensionRangeOptions

Default for ExtensionRangeOptions. Should only be used for 'required' decoders as an initial value.

defaultField : Field

Default for Field. Should only be used for 'required' decoders as an initial value.

defaultFieldDescriptorProto : FieldDescriptorProto

Default for FieldDescriptorProto. Should only be used for 'required' decoders as an initial value.

defaultFieldMask : FieldMask

Default for FieldMask. Should only be used for 'required' decoders as an initial value.

defaultFieldOptions : FieldOptions

Default for FieldOptions. Should only be used for 'required' decoders as an initial value.

defaultFileDescriptorProto : FileDescriptorProto

Default for FileDescriptorProto. Should only be used for 'required' decoders as an initial value.

defaultFileDescriptorSet : FileDescriptorSet

Default for FileDescriptorSet. Should only be used for 'required' decoders as an initial value.

defaultFileOptions : FileOptions

Default for FileOptions. Should only be used for 'required' decoders as an initial value.

defaultFloatValue : FloatValue

Default for FloatValue. Should only be used for 'required' decoders as an initial value.

defaultGeneratedCodeInfo : GeneratedCodeInfo

Default for GeneratedCodeInfo. Should only be used for 'required' decoders as an initial value.

defaultInt32Value : Int32Value

Default for Int32Value. Should only be used for 'required' decoders as an initial value.

defaultInt64Value : Int64Value

Default for Int64Value. Should only be used for 'required' decoders as an initial value.

defaultListValue : ListValue

Default for ListValue. Should only be used for 'required' decoders as an initial value.

defaultMessageOptions : MessageOptions

Default for MessageOptions. Should only be used for 'required' decoders as an initial value.

defaultMethod : Method

Default for Method. Should only be used for 'required' decoders as an initial value.

defaultMethodDescriptorProto : MethodDescriptorProto

Default for MethodDescriptorProto. Should only be used for 'required' decoders as an initial value.

defaultMethodOptions : MethodOptions

Default for MethodOptions. Should only be used for 'required' decoders as an initial value.

defaultMixin : Mixin

Default for Mixin. Should only be used for 'required' decoders as an initial value.

defaultOneofDescriptorProto : OneofDescriptorProto

Default for OneofDescriptorProto. Should only be used for 'required' decoders as an initial value.

defaultOneofOptions : OneofOptions

Default for OneofOptions. Should only be used for 'required' decoders as an initial value.

defaultOption : Option

Default for Option. Should only be used for 'required' decoders as an initial value.

defaultServiceDescriptorProto : ServiceDescriptorProto

Default for ServiceDescriptorProto. Should only be used for 'required' decoders as an initial value.

defaultServiceOptions : ServiceOptions

Default for ServiceOptions. Should only be used for 'required' decoders as an initial value.

defaultSourceCodeInfo : SourceCodeInfo

Default for SourceCodeInfo. Should only be used for 'required' decoders as an initial value.

defaultSourceContext : SourceContext

Default for SourceContext. Should only be used for 'required' decoders as an initial value.

defaultStringValue : StringValue

Default for StringValue. Should only be used for 'required' decoders as an initial value.

defaultStruct : Struct

Default for Struct. Should only be used for 'required' decoders as an initial value.

defaultTimestamp : Timestamp

Default for Timestamp. Should only be used for 'required' decoders as an initial value.

defaultType : Type

Default for Type. Should only be used for 'required' decoders as an initial value.

defaultUInt32Value : UInt32Value

Default for UInt32Value. Should only be used for 'required' decoders as an initial value.

defaultUInt64Value : UInt64Value

Default for UInt64Value. Should only be used for 'required' decoders as an initial value.

defaultUninterpretedOption : UninterpretedOption

Default for UninterpretedOption. Should only be used for 'required' decoders as an initial value.

defaultValue : Value

Default for Value. Should only be used for 'required' decoders as an initial value.

encodeAny : Any -> Protobuf.Encode.Encoder

Declares how to encode a Any to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeApi : Api -> Protobuf.Encode.Encoder

Declares how to encode a Api to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeBoolValue : BoolValue -> Protobuf.Encode.Encoder

Declares how to encode a BoolValue to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeBytesValue : BytesValue -> Protobuf.Encode.Encoder

Declares how to encode a BytesValue to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeDescriptorProto : DescriptorProto -> Protobuf.Encode.Encoder

Declares how to encode a DescriptorProto to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeDoubleValue : DoubleValue -> Protobuf.Encode.Encoder

Declares how to encode a DoubleValue to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeDuration : Duration -> Protobuf.Encode.Encoder

Declares how to encode a Duration to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeEmpty : Empty -> Protobuf.Encode.Encoder

Declares how to encode a Empty to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeEnum : Enum -> Protobuf.Encode.Encoder

Declares how to encode a Enum to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeEnumDescriptorProto : EnumDescriptorProto -> Protobuf.Encode.Encoder

Declares how to encode a EnumDescriptorProto to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeEnumOptions : EnumOptions -> Protobuf.Encode.Encoder

Declares how to encode a EnumOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeEnumValue : EnumValue -> Protobuf.Encode.Encoder

Declares how to encode a EnumValue to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeEnumValueDescriptorProto : EnumValueDescriptorProto -> Protobuf.Encode.Encoder

Declares how to encode a EnumValueDescriptorProto to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeEnumValueOptions : EnumValueOptions -> Protobuf.Encode.Encoder

Declares how to encode a EnumValueOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeExtensionRangeOptions : ExtensionRangeOptions -> Protobuf.Encode.Encoder

Declares how to encode a ExtensionRangeOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeField : Field -> Protobuf.Encode.Encoder

Declares how to encode a Field to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeFieldDescriptorProto : FieldDescriptorProto -> Protobuf.Encode.Encoder

Declares how to encode a FieldDescriptorProto to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeFieldMask : FieldMask -> Protobuf.Encode.Encoder

Declares how to encode a FieldMask to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeFieldOptions : FieldOptions -> Protobuf.Encode.Encoder

Declares how to encode a FieldOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeFileDescriptorProto : FileDescriptorProto -> Protobuf.Encode.Encoder

Declares how to encode a FileDescriptorProto to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeFileDescriptorSet : FileDescriptorSet -> Protobuf.Encode.Encoder

Declares how to encode a FileDescriptorSet to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeFileOptions : FileOptions -> Protobuf.Encode.Encoder

Declares how to encode a FileOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeFloatValue : FloatValue -> Protobuf.Encode.Encoder

Declares how to encode a FloatValue to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeGeneratedCodeInfo : GeneratedCodeInfo -> Protobuf.Encode.Encoder

Declares how to encode a GeneratedCodeInfo to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeInt32Value : Int32Value -> Protobuf.Encode.Encoder

Declares how to encode a Int32Value to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeInt64Value : Int64Value -> Protobuf.Encode.Encoder

Declares how to encode a Int64Value to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeListValue : ListValue -> Protobuf.Encode.Encoder

Declares how to encode a ListValue to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeMessageOptions : MessageOptions -> Protobuf.Encode.Encoder

Declares how to encode a MessageOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeMethod : Method -> Protobuf.Encode.Encoder

Declares how to encode a Method to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeMethodDescriptorProto : MethodDescriptorProto -> Protobuf.Encode.Encoder

Declares how to encode a MethodDescriptorProto to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeMethodOptions : MethodOptions -> Protobuf.Encode.Encoder

Declares how to encode a MethodOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeMixin : Mixin -> Protobuf.Encode.Encoder

Declares how to encode a Mixin to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeOneofDescriptorProto : OneofDescriptorProto -> Protobuf.Encode.Encoder

Declares how to encode a OneofDescriptorProto to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeOneofOptions : OneofOptions -> Protobuf.Encode.Encoder

Declares how to encode a OneofOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeOption : Option -> Protobuf.Encode.Encoder

Declares how to encode a Option to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeServiceDescriptorProto : ServiceDescriptorProto -> Protobuf.Encode.Encoder

Declares how to encode a ServiceDescriptorProto to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeServiceOptions : ServiceOptions -> Protobuf.Encode.Encoder

Declares how to encode a ServiceOptions to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeSourceCodeInfo : SourceCodeInfo -> Protobuf.Encode.Encoder

Declares how to encode a SourceCodeInfo to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeSourceContext : SourceContext -> Protobuf.Encode.Encoder

Declares how to encode a SourceContext to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeStringValue : StringValue -> Protobuf.Encode.Encoder

Declares how to encode a StringValue to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeStruct : Struct -> Protobuf.Encode.Encoder

Declares how to encode a Struct to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeTimestamp : Timestamp -> Protobuf.Encode.Encoder

Declares how to encode a Timestamp to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeType : Type -> Protobuf.Encode.Encoder

Declares how to encode a Type to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeUInt32Value : UInt32Value -> Protobuf.Encode.Encoder

Declares how to encode a UInt32Value to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeUInt64Value : UInt64Value -> Protobuf.Encode.Encoder

Declares how to encode a UInt64Value to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeUninterpretedOption : UninterpretedOption -> Protobuf.Encode.Encoder

Declares how to encode a UninterpretedOption to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

encodeValue : Value -> Protobuf.Encode.Encoder

Declares how to encode a Value to Bytes. To actually perform the conversion to Bytes, you need to use Protobuf.Encode.encode from eriktim/elm-protocol-buffers.

fieldNumbersAny : { typeUrl : Basics.Int, value : Basics.Int }

The field numbers for the fields of Any. This is mostly useful for internals, like documentation generation.

fieldNumbersApi : { name : Basics.Int, methods : Basics.Int, options : Basics.Int, version : Basics.Int, sourceContext : Basics.Int, mixins : Basics.Int, syntax : Basics.Int }

The field numbers for the fields of Api. This is mostly useful for internals, like documentation generation.

fieldNumbersBoolValue : { value : Basics.Int }

The field numbers for the fields of BoolValue. This is mostly useful for internals, like documentation generation.

fieldNumbersBytesValue : { value : Basics.Int }

The field numbers for the fields of BytesValue. This is mostly useful for internals, like documentation generation.

fieldNumbersDescriptorProto : { name : Basics.Int, field : Basics.Int, extension : Basics.Int, nestedType : Basics.Int, enumType : Basics.Int, extensionRange : Basics.Int, oneofDecl : Basics.Int, options : Basics.Int, reservedRange : Basics.Int, reservedName : Basics.Int }

The field numbers for the fields of DescriptorProto. This is mostly useful for internals, like documentation generation.

fieldNumbersDoubleValue : { value : Basics.Int }

The field numbers for the fields of DoubleValue. This is mostly useful for internals, like documentation generation.

fieldNumbersDuration : { seconds : Basics.Int, nanos : Basics.Int }

The field numbers for the fields of Duration. This is mostly useful for internals, like documentation generation.

fieldNumbersEmpty : {}

The field numbers for the fields of Empty. This is mostly useful for internals, like documentation generation.

fieldNumbersEnum : { name : Basics.Int, enumvalue : Basics.Int, options : Basics.Int, sourceContext : Basics.Int, syntax : Basics.Int }

The field numbers for the fields of Enum. This is mostly useful for internals, like documentation generation.

fieldNumbersEnumDescriptorProto : { name : Basics.Int, value : Basics.Int, options : Basics.Int, reservedRange : Basics.Int, reservedName : Basics.Int }

The field numbers for the fields of EnumDescriptorProto. This is mostly useful for internals, like documentation generation.

fieldNumbersEnumOptions : { allowAlias : Basics.Int, deprecated : Basics.Int, deprecatedLegacyJsonFieldConflicts : Basics.Int, uninterpretedOption : Basics.Int }

The field numbers for the fields of EnumOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersEnumValue : { name : Basics.Int, number : Basics.Int, options : Basics.Int }

The field numbers for the fields of EnumValue. This is mostly useful for internals, like documentation generation.

fieldNumbersEnumValueDescriptorProto : { name : Basics.Int, number : Basics.Int, options : Basics.Int }

The field numbers for the fields of EnumValueDescriptorProto. This is mostly useful for internals, like documentation generation.

fieldNumbersEnumValueOptions : { deprecated : Basics.Int, uninterpretedOption : Basics.Int }

The field numbers for the fields of EnumValueOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersExtensionRangeOptions : { uninterpretedOption : Basics.Int }

The field numbers for the fields of ExtensionRangeOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersField : { kind : Basics.Int, cardinality : Basics.Int, number : Basics.Int, name : Basics.Int, typeUrl : Basics.Int, oneofIndex : Basics.Int, packed : Basics.Int, options : Basics.Int, jsonName : Basics.Int, defaultValue : Basics.Int }

The field numbers for the fields of Field. This is mostly useful for internals, like documentation generation.

fieldNumbersFieldDescriptorProto : { name : Basics.Int, number : Basics.Int, label : Basics.Int, type_ : Basics.Int, typeName : Basics.Int, extendee : Basics.Int, defaultValue : Basics.Int, oneofIndex : Basics.Int, jsonName : Basics.Int, options : Basics.Int, proto3Optional : Basics.Int }

The field numbers for the fields of FieldDescriptorProto. This is mostly useful for internals, like documentation generation.

fieldNumbersFieldMask : { paths : Basics.Int }

The field numbers for the fields of FieldMask. This is mostly useful for internals, like documentation generation.

fieldNumbersFieldOptions : { ctype : Basics.Int, packed : Basics.Int, jstype : Basics.Int, lazy : Basics.Int, unverifiedLazy : Basics.Int, deprecated : Basics.Int, weak : Basics.Int, debugRedact : Basics.Int, retention : Basics.Int, target : Basics.Int, uninterpretedOption : Basics.Int }

The field numbers for the fields of FieldOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersFileDescriptorProto : { name : Basics.Int, package : Basics.Int, dependency : Basics.Int, publicDependency : Basics.Int, weakDependency : Basics.Int, messageType : Basics.Int, enumType : Basics.Int, service : Basics.Int, extension : Basics.Int, options : Basics.Int, sourceCodeInfo : Basics.Int, syntax : Basics.Int, edition : Basics.Int }

The field numbers for the fields of FileDescriptorProto. This is mostly useful for internals, like documentation generation.

fieldNumbersFileDescriptorSet : { file : Basics.Int }

The field numbers for the fields of FileDescriptorSet. This is mostly useful for internals, like documentation generation.

fieldNumbersFileOptions : { javaPackage : Basics.Int, javaOuterClassname : Basics.Int, javaMultipleFiles : Basics.Int, javaGenerateEqualsAndHash : Basics.Int, javaStringCheckUtf8 : Basics.Int, optimizeFor : Basics.Int, goPackage : Basics.Int, ccGenericServices : Basics.Int, javaGenericServices : Basics.Int, pyGenericServices : Basics.Int, phpGenericServices : Basics.Int, deprecated : Basics.Int, ccEnableArenas : Basics.Int, objcClassPrefix : Basics.Int, csharpNamespace : Basics.Int, swiftPrefix : Basics.Int, phpClassPrefix : Basics.Int, phpNamespace : Basics.Int, phpMetadataNamespace : Basics.Int, rubyPackage : Basics.Int, uninterpretedOption : Basics.Int }

The field numbers for the fields of FileOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersFloatValue : { value : Basics.Int }

The field numbers for the fields of FloatValue. This is mostly useful for internals, like documentation generation.

fieldNumbersGeneratedCodeInfo : { annotation : Basics.Int }

The field numbers for the fields of GeneratedCodeInfo. This is mostly useful for internals, like documentation generation.

fieldNumbersInt32Value : { value : Basics.Int }

The field numbers for the fields of Int32Value. This is mostly useful for internals, like documentation generation.

fieldNumbersInt64Value : { value : Basics.Int }

The field numbers for the fields of Int64Value. This is mostly useful for internals, like documentation generation.

fieldNumbersListValue : { values : Basics.Int }

The field numbers for the fields of ListValue. This is mostly useful for internals, like documentation generation.

fieldNumbersMessageOptions : { messageSetWireFormat : Basics.Int, noStandardDescriptorAccessor : Basics.Int, deprecated : Basics.Int, mapEntry : Basics.Int, deprecatedLegacyJsonFieldConflicts : Basics.Int, uninterpretedOption : Basics.Int }

The field numbers for the fields of MessageOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersMethod : { name : Basics.Int, requestTypeUrl : Basics.Int, requestStreaming : Basics.Int, responseTypeUrl : Basics.Int, responseStreaming : Basics.Int, options : Basics.Int, syntax : Basics.Int }

The field numbers for the fields of Method. This is mostly useful for internals, like documentation generation.

fieldNumbersMethodDescriptorProto : { name : Basics.Int, inputType : Basics.Int, outputType : Basics.Int, options : Basics.Int, clientStreaming : Basics.Int, serverStreaming : Basics.Int }

The field numbers for the fields of MethodDescriptorProto. This is mostly useful for internals, like documentation generation.

fieldNumbersMethodOptions : { deprecated : Basics.Int, idempotencyLevel : Basics.Int, uninterpretedOption : Basics.Int }

The field numbers for the fields of MethodOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersMixin : { name : Basics.Int, root : Basics.Int }

The field numbers for the fields of Mixin. This is mostly useful for internals, like documentation generation.

fieldNumbersOneofDescriptorProto : { name : Basics.Int, options : Basics.Int }

The field numbers for the fields of OneofDescriptorProto. This is mostly useful for internals, like documentation generation.

fieldNumbersOneofOptions : { uninterpretedOption : Basics.Int }

The field numbers for the fields of OneofOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersOption : { name : Basics.Int, value : Basics.Int }

The field numbers for the fields of Option. This is mostly useful for internals, like documentation generation.

fieldNumbersServiceDescriptorProto : { name : Basics.Int, method : Basics.Int, options : Basics.Int }

The field numbers for the fields of ServiceDescriptorProto. This is mostly useful for internals, like documentation generation.

fieldNumbersServiceOptions : { deprecated : Basics.Int, uninterpretedOption : Basics.Int }

The field numbers for the fields of ServiceOptions. This is mostly useful for internals, like documentation generation.

fieldNumbersSourceCodeInfo : { location : Basics.Int }

The field numbers for the fields of SourceCodeInfo. This is mostly useful for internals, like documentation generation.

fieldNumbersSourceContext : { fileName : Basics.Int }

The field numbers for the fields of SourceContext. This is mostly useful for internals, like documentation generation.

fieldNumbersStringValue : { value : Basics.Int }

The field numbers for the fields of StringValue. This is mostly useful for internals, like documentation generation.

fieldNumbersStruct : { fields : Basics.Int }

The field numbers for the fields of Struct. This is mostly useful for internals, like documentation generation.

fieldNumbersTimestamp : { seconds : Basics.Int, nanos : Basics.Int }

The field numbers for the fields of Timestamp. This is mostly useful for internals, like documentation generation.

fieldNumbersType : { name : Basics.Int, fields : Basics.Int, oneofs : Basics.Int, options : Basics.Int, sourceContext : Basics.Int, syntax : Basics.Int }

The field numbers for the fields of Type. This is mostly useful for internals, like documentation generation.

fieldNumbersUInt32Value : { value : Basics.Int }

The field numbers for the fields of UInt32Value. This is mostly useful for internals, like documentation generation.

fieldNumbersUInt64Value : { value : Basics.Int }

The field numbers for the fields of UInt64Value. This is mostly useful for internals, like documentation generation.

fieldNumbersUninterpretedOption : { name : Basics.Int, identifierValue : Basics.Int, positiveIntValue : Basics.Int, negativeIntValue : Basics.Int, doubleValue : Basics.Int, stringValue : Basics.Int, aggregateValue : Basics.Int }

The field numbers for the fields of UninterpretedOption. This is mostly useful for internals, like documentation generation.

fieldNumbersValue : { kind : Internals_.FieldNumbersProtoGoogleProtobufValueKind__Kind }

The field numbers for the fields of Value. This is mostly useful for internals, like documentation generation.

jsonDecodeAny : Json.Decode.Decoder Any

Declares how to decode a Any from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeApi : Json.Decode.Decoder Api

Declares how to decode a Api from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeBoolValue : Json.Decode.Decoder BoolValue

Declares how to decode a BoolValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeBytesValue : Json.Decode.Decoder BytesValue

Declares how to decode a BytesValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeDescriptorProto : Json.Decode.Decoder DescriptorProto

Declares how to decode a DescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeDoubleValue : Json.Decode.Decoder DoubleValue

Declares how to decode a DoubleValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeDuration : Json.Decode.Decoder Duration

Declares how to decode a Duration from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeEmpty : Json.Decode.Decoder Empty

Declares how to decode a Empty from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeEnum : Json.Decode.Decoder Enum

Declares how to decode a Enum from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeEnumDescriptorProto : Json.Decode.Decoder EnumDescriptorProto

Declares how to decode a EnumDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeEnumOptions : Json.Decode.Decoder EnumOptions

Declares how to decode a EnumOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeEnumValue : Json.Decode.Decoder EnumValue

Declares how to decode a EnumValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeEnumValueDescriptorProto : Json.Decode.Decoder EnumValueDescriptorProto

Declares how to decode a EnumValueDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeEnumValueOptions : Json.Decode.Decoder EnumValueOptions

Declares how to decode a EnumValueOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeExtensionRangeOptions : Json.Decode.Decoder ExtensionRangeOptions

Declares how to decode a ExtensionRangeOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeField : Json.Decode.Decoder Field

Declares how to decode a Field from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeFieldDescriptorProto : Json.Decode.Decoder FieldDescriptorProto

Declares how to decode a FieldDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeFieldMask : Json.Decode.Decoder FieldMask

Declares how to decode a FieldMask from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeFieldOptions : Json.Decode.Decoder FieldOptions

Declares how to decode a FieldOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeFileDescriptorProto : Json.Decode.Decoder FileDescriptorProto

Declares how to decode a FileDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeFileDescriptorSet : Json.Decode.Decoder FileDescriptorSet

Declares how to decode a FileDescriptorSet from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeFileOptions : Json.Decode.Decoder FileOptions

Declares how to decode a FileOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeFloatValue : Json.Decode.Decoder FloatValue

Declares how to decode a FloatValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeGeneratedCodeInfo : Json.Decode.Decoder GeneratedCodeInfo

Declares how to decode a GeneratedCodeInfo from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeInt32Value : Json.Decode.Decoder Int32Value

Declares how to decode a Int32Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeInt64Value : Json.Decode.Decoder Int64Value

Declares how to decode a Int64Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeListValue : Json.Decode.Decoder ListValue

Declares how to decode a ListValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeMessageOptions : Json.Decode.Decoder MessageOptions

Declares how to decode a MessageOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeMethod : Json.Decode.Decoder Method

Declares how to decode a Method from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeMethodDescriptorProto : Json.Decode.Decoder MethodDescriptorProto

Declares how to decode a MethodDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeMethodOptions : Json.Decode.Decoder MethodOptions

Declares how to decode a MethodOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeMixin : Json.Decode.Decoder Mixin

Declares how to decode a Mixin from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeOneofDescriptorProto : Json.Decode.Decoder OneofDescriptorProto

Declares how to decode a OneofDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeOneofOptions : Json.Decode.Decoder OneofOptions

Declares how to decode a OneofOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeOption : Json.Decode.Decoder Option

Declares how to decode a Option from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeServiceDescriptorProto : Json.Decode.Decoder ServiceDescriptorProto

Declares how to decode a ServiceDescriptorProto from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeServiceOptions : Json.Decode.Decoder ServiceOptions

Declares how to decode a ServiceOptions from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeSourceCodeInfo : Json.Decode.Decoder SourceCodeInfo

Declares how to decode a SourceCodeInfo from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeSourceContext : Json.Decode.Decoder SourceContext

Declares how to decode a SourceContext from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeStringValue : Json.Decode.Decoder StringValue

Declares how to decode a StringValue from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeStruct : Json.Decode.Decoder Struct

Declares how to decode a Struct from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeTimestamp : Json.Decode.Decoder Timestamp

Declares how to decode a Timestamp from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeType : Json.Decode.Decoder Type

Declares how to decode a Type from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeUInt32Value : Json.Decode.Decoder UInt32Value

Declares how to decode a UInt32Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeUInt64Value : Json.Decode.Decoder UInt64Value

Declares how to decode a UInt64Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeUninterpretedOption : Json.Decode.Decoder UninterpretedOption

Declares how to decode a UninterpretedOption from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonDecodeValue : Json.Decode.Decoder Value

Declares how to decode a Value from Bytes. To actually perform the conversion from Bytes, you need to use Protobuf.Decode.decode from eriktim/elm-protocol-buffers.

jsonEncodeAny : Any -> Json.Encode.Value

Encode a Any to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeApi : Api -> Json.Encode.Value

Encode a Api to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeBoolValue : BoolValue -> Json.Encode.Value

Encode a BoolValue to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeBytesValue : BytesValue -> Json.Encode.Value

Encode a BytesValue to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeDescriptorProto : DescriptorProto -> Json.Encode.Value

Encode a DescriptorProto to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeDoubleValue : DoubleValue -> Json.Encode.Value

Encode a DoubleValue to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeDuration : Duration -> Json.Encode.Value

Encode a Duration to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeEmpty : Empty -> Json.Encode.Value

Encode a Empty to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeEnum : Enum -> Json.Encode.Value

Encode a Enum to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeEnumDescriptorProto : EnumDescriptorProto -> Json.Encode.Value

Encode a EnumDescriptorProto to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeEnumOptions : EnumOptions -> Json.Encode.Value

Encode a EnumOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeEnumValue : EnumValue -> Json.Encode.Value

Encode a EnumValue to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeEnumValueDescriptorProto : EnumValueDescriptorProto -> Json.Encode.Value

Encode a EnumValueDescriptorProto to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeEnumValueOptions : EnumValueOptions -> Json.Encode.Value

Encode a EnumValueOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeExtensionRangeOptions : ExtensionRangeOptions -> Json.Encode.Value

Encode a ExtensionRangeOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeField : Field -> Json.Encode.Value

Encode a Field to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeFieldDescriptorProto : FieldDescriptorProto -> Json.Encode.Value

Encode a FieldDescriptorProto to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeFieldMask : FieldMask -> Json.Encode.Value

Encode a FieldMask to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeFieldOptions : FieldOptions -> Json.Encode.Value

Encode a FieldOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeFileDescriptorProto : FileDescriptorProto -> Json.Encode.Value

Encode a FileDescriptorProto to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeFileDescriptorSet : FileDescriptorSet -> Json.Encode.Value

Encode a FileDescriptorSet to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeFileOptions : FileOptions -> Json.Encode.Value

Encode a FileOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeFloatValue : FloatValue -> Json.Encode.Value

Encode a FloatValue to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeGeneratedCodeInfo : GeneratedCodeInfo -> Json.Encode.Value

Encode a GeneratedCodeInfo to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeInt32Value : Int32Value -> Json.Encode.Value

Encode a Int32Value to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeInt64Value : Int64Value -> Json.Encode.Value

Encode a Int64Value to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeListValue : ListValue -> Json.Encode.Value

Encode a ListValue to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeMessageOptions : MessageOptions -> Json.Encode.Value

Encode a MessageOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeMethod : Method -> Json.Encode.Value

Encode a Method to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeMethodDescriptorProto : MethodDescriptorProto -> Json.Encode.Value

Encode a MethodDescriptorProto to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeMethodOptions : MethodOptions -> Json.Encode.Value

Encode a MethodOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeMixin : Mixin -> Json.Encode.Value

Encode a Mixin to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeOneofDescriptorProto : OneofDescriptorProto -> Json.Encode.Value

Encode a OneofDescriptorProto to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeOneofOptions : OneofOptions -> Json.Encode.Value

Encode a OneofOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeOption : Option -> Json.Encode.Value

Encode a Option to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeServiceDescriptorProto : ServiceDescriptorProto -> Json.Encode.Value

Encode a ServiceDescriptorProto to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeServiceOptions : ServiceOptions -> Json.Encode.Value

Encode a ServiceOptions to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeSourceCodeInfo : SourceCodeInfo -> Json.Encode.Value

Encode a SourceCodeInfo to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeSourceContext : SourceContext -> Json.Encode.Value

Encode a SourceContext to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeStringValue : StringValue -> Json.Encode.Value

Encode a StringValue to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeStruct : Struct -> Json.Encode.Value

Encode a Struct to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeTimestamp : Timestamp -> Json.Encode.Value

Encode a Timestamp to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeType : Type -> Json.Encode.Value

Encode a Type to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeUInt32Value : UInt32Value -> Json.Encode.Value

Encode a UInt32Value to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeUInt64Value : UInt64Value -> Json.Encode.Value

Encode a UInt64Value to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeUninterpretedOption : UninterpretedOption -> Json.Encode.Value

Encode a UninterpretedOption to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

jsonEncodeValue : Value -> Json.Encode.Value

Encode a Value to JSON. Uses the canonical encoding described here: https://protobuf.dev/programming-guides/proto3/#json

unwrapDescriptorProto : DescriptorProto_ -> DescriptorProto

Unwrap a DescriptorProto from its wrapper DescriptorProto_.

unwrapListValue : ListValue_ -> ListValue

Unwrap a ListValue from its wrapper ListValue_.

unwrapValue : Value_ -> Value

Unwrap a Value from its wrapper Value_.

wrapDescriptorProto : DescriptorProto -> DescriptorProto_

Wrap a DescriptorProto into its wrapper DescriptorProto_.

wrapListValue : ListValue -> ListValue_

Wrap a ListValue into its wrapper ListValue_.

wrapValue : Value -> Value_

Wrap a Value into its wrapper Value_.