Some basic list proofs
A non-empty list
A sorted list
proveNonEmptyList : List a -> Maybe (RefinementProofs.Theory.Proven (List a) NonEmptyList)
Prove that a list is non-empty
mkSortedList : List comparable -> RefinementProofs.Theory.Proven (List comparable) SortedList
Make a sorted list.
head : RefinementProofs.Theory.Proven (List a) NonEmptyList -> a
Safely get a head of a non-empty list
nonEmptyListMap : (a -> b) -> RefinementProofs.Theory.Proven (List a) NonEmptyList -> RefinementProofs.Theory.Proven (List b) NonEmptyList
Map over a non-empty list
lengthOfNonEmptyList : RefinementProofs.Theory.Proven (List a) NonEmptyList -> RefinementProofs.Theory.Proven Basics.Int RefinementProofs.Proofs.NumberProofs.Positive
Get the length of a non-empty list