Quantum Computing Simulator in Elm
variance : Ket (ComplexNumbers.ComplexNumber Basics.Float) -> HermitianMatrix Basics.Float -> Result String (Real Basics.Float)
variance
multiplyInvertableMatrixKet : RowVector.InnerProductSpace a -> InvertableMatrix a -> Ket a -> Result String (Ket a)
Multiply a Vector by a Matrix
h : InvertableMatrix (Real Basics.Float)
Hadamard Operation
hComplex : UnitaryMatrix Basics.Float
Hadamard Operation
x : InvertableMatrix (Real Basics.Float)
NOT Operation
squareRootNot : InvertableMatrix (Real Basics.Float)
square root of NOT Operation
sigmaXReal : InvertableMatrix (Real Basics.Float)
SigmaX Operation
sigmaX : UnitaryMatrix Basics.Float
SigmaX Operation
sigmaY : UnitaryMatrix Basics.Float
SigmaX Operation
sigmaZ : UnitaryMatrix Basics.Float
SigmaX Operation
z : InvertableMatrix (Real Basics.Float)
z Operation
toffoli : InvertableMatrix (Real Basics.Float)
Toffoli Operation
fredkin : InvertableMatrix Basics.Float
Fredkin Operation
t : UnitaryMatrix Basics.Float
t Operation
s : UnitaryMatrix Basics.Float
s Operation
cNOT : InvertableMatrix (Real Basics.Float)
controlled-NOT Operation
and : InvertableMatrix (Real Basics.Float)
and Operation
probabilityOfState : RowVector.InnerProductSpace a -> Ket a -> Bra a -> Result String a
Calculate the probability of end state, the Bra.Bra, with given start state, the Ket.Ket
multiplyHermitianMatrixKet : HermitianMatrix Basics.Float -> Ket (ComplexNumbers.ComplexNumber Basics.Float) -> Result String (Ket (ComplexNumbers.ComplexNumber Basics.Float))
Multiply a Vector by a Matrix
expectedValue : Ket (ComplexNumbers.ComplexNumber Basics.Float) -> HermitianMatrix Basics.Float -> Result String (Real Basics.Float)
Calculate the expected value when a Ket.Ket is multiplied by a Hermitian Matrix
varianceHermitianOperator : Ket (ComplexNumbers.ComplexNumber Basics.Float) -> HermitianMatrix Basics.Float -> Result String (HermitianMatrix Basics.Float)
varianceHermitianOperator