A module for Normal Matrix
Symmetric Matrix type
empty : NormalMatrix a
Monoid empty for NormalMatrix
createMatrixFromColumnVectors : List (ColumnVector a) -> NormalMatrix a
Create a Matrix from a list of Column Vectors
identity : Field a -> Basics.Int -> NormalMatrix a
Create Square Identity Matrix with n dimension
dimension : NormalMatrix a -> Basics.Int
Dimension of the matrix
isNormal : RowVector.InnerProductSpace a -> SquareMatrix a -> Result String (SquareMatrix a)
Predicate to determine if Matrix is normal
getDiagonalProduct : Field a -> NormalMatrix a -> Maybe a
Get the Product of the diagonal of a Matrix
subMatrix : Basics.Int -> Basics.Int -> Basics.Int -> Basics.Int -> NormalMatrix a -> NormalMatrix a
Calculate the submatrix given a starting and ending row and column index
transpose : NormalMatrix a -> NormalMatrix a
Transpose a Matrix
scalarMultiplication : Field a -> a -> NormalMatrix a -> NormalMatrix a
Scalar multiplication over a Square Matrix
adjoint : NormalMatrix (ComplexNumbers.ComplexNumber number) -> NormalMatrix (ComplexNumbers.ComplexNumber number)
Perform the adjoint operation on a Complex Numbered Matrix
add : Field a -> NormalMatrix a -> NormalMatrix a -> NormalMatrix a
Add two NormalMatrix together
multiply : RowVector.InnerProductSpace a -> NormalMatrix a -> NormalMatrix a -> NormalMatrix a
Square Matrix Square Matrix multiplication
multiplyIfCan : RowVector.InnerProductSpace a -> NormalMatrix a -> NormalMatrix a -> Result String (NormalMatrix a)
Square Matrix Square Matrix multiplication
multiplyMatrixVector : RowVector.InnerProductSpace a -> NormalMatrix a -> ColumnVector a -> Result String (ColumnVector a)
Multiply a ColumnVector by a Matrix
subtract : Field a -> NormalMatrix a -> NormalMatrix a -> NormalMatrix a
Subtract two Square Matrices
getAt : ( Basics.Int, Basics.Int ) -> NormalMatrix a -> Maybe a
Get the value in a matrix at the specified row and column
setAt : ( Basics.Int, Basics.Int ) -> a -> NormalMatrix a -> NormalMatrix a
Set the value in a Normal Matrix at the specified row and column
appendHorizontal : NormalMatrix a -> NormalMatrix a -> NormalMatrix a
Append Matricies together horizontally
equal : (a -> a -> Basics.Bool) -> Typeclasses.Classes.Equality.Equality (NormalMatrix a)
Compare two matricies using comparator
equalImplementation : (a -> a -> Basics.Bool) -> NormalMatrix a -> NormalMatrix a -> Basics.Bool
Compare two Matrices for equality
gaussJordan : RowVector.VectorSpace a -> NormalMatrix a -> NormalMatrix a
Function composition of Gaussian Elimination and Jordan Elimination
upperTriangle : RowVector.VectorSpace a -> NormalMatrix a -> NormalMatrix a
Put a matrix into Upper Triangular Form