# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: google/cloud/automl_v1beta1/proto/detection.proto
import sys
_b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1"))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from google.cloud.automl_v1beta1.proto import (
geometry_pb2 as google_dot_cloud_dot_automl__v1beta1_dot_proto_dot_geometry__pb2,
)
from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2
from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name="google/cloud/automl_v1beta1/proto/detection.proto",
package="google.cloud.automl.v1beta1",
syntax="proto3",
serialized_options=_b(
"\n\037com.google.cloud.automl.v1beta1P\001ZAgoogle.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl\312\002\033Google\\Cloud\\AutoMl\\V1beta1\352\002\036Google::Cloud::AutoML::V1beta1"
),
serialized_pb=_b(
'\n1google/cloud/automl_v1beta1/proto/detection.proto\x12\x1bgoogle.cloud.automl.v1beta1\x1a\x30google/cloud/automl_v1beta1/proto/geometry.proto\x1a\x1egoogle/protobuf/duration.proto\x1a\x1cgoogle/api/annotations.proto"p\n\x1eImageObjectDetectionAnnotation\x12?\n\x0c\x62ounding_box\x18\x01 \x01(\x0b\x32).google.cloud.automl.v1beta1.BoundingPoly\x12\r\n\x05score\x18\x02 \x01(\x02"\xb4\x01\n\x1dVideoObjectTrackingAnnotation\x12\x13\n\x0binstance_id\x18\x01 \x01(\t\x12.\n\x0btime_offset\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration\x12?\n\x0c\x62ounding_box\x18\x03 \x01(\x0b\x32).google.cloud.automl.v1beta1.BoundingPoly\x12\r\n\x05score\x18\x04 \x01(\x02"\xae\x02\n\x17\x42oundingBoxMetricsEntry\x12\x15\n\riou_threshold\x18\x01 \x01(\x02\x12\x1e\n\x16mean_average_precision\x18\x02 \x01(\x02\x12o\n\x1a\x63onfidence_metrics_entries\x18\x03 \x03(\x0b\x32K.google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.ConfidenceMetricsEntry\x1ak\n\x16\x43onfidenceMetricsEntry\x12\x1c\n\x14\x63onfidence_threshold\x18\x01 \x01(\x02\x12\x0e\n\x06recall\x18\x02 \x01(\x02\x12\x11\n\tprecision\x18\x03 \x01(\x02\x12\x10\n\x08\x66\x31_score\x18\x04 \x01(\x02"\xd6\x01\n%ImageObjectDetectionEvaluationMetrics\x12$\n\x1c\x65valuated_bounding_box_count\x18\x01 \x01(\x05\x12Z\n\x1c\x62ounding_box_metrics_entries\x18\x02 \x03(\x0b\x32\x34.google.cloud.automl.v1beta1.BoundingBoxMetricsEntry\x12+\n#bounding_box_mean_average_precision\x18\x03 \x01(\x02"\xf4\x01\n$VideoObjectTrackingEvaluationMetrics\x12\x1d\n\x15\x65valuated_frame_count\x18\x01 \x01(\x05\x12$\n\x1c\x65valuated_bounding_box_count\x18\x02 \x01(\x05\x12Z\n\x1c\x62ounding_box_metrics_entries\x18\x04 \x03(\x0b\x32\x34.google.cloud.automl.v1beta1.BoundingBoxMetricsEntry\x12+\n#bounding_box_mean_average_precision\x18\x06 \x01(\x02\x42\xa5\x01\n\x1f\x63om.google.cloud.automl.v1beta1P\x01ZAgoogle.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl\xca\x02\x1bGoogle\\Cloud\\AutoMl\\V1beta1\xea\x02\x1eGoogle::Cloud::AutoML::V1beta1b\x06proto3'
),
dependencies=[
google_dot_cloud_dot_automl__v1beta1_dot_proto_dot_geometry__pb2.DESCRIPTOR,
google_dot_protobuf_dot_duration__pb2.DESCRIPTOR,
google_dot_api_dot_annotations__pb2.DESCRIPTOR,
],
)
_IMAGEOBJECTDETECTIONANNOTATION = _descriptor.Descriptor(
name="ImageObjectDetectionAnnotation",
full_name="google.cloud.automl.v1beta1.ImageObjectDetectionAnnotation",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="bounding_box",
full_name="google.cloud.automl.v1beta1.ImageObjectDetectionAnnotation.bounding_box",
index=0,
number=1,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="score",
full_name="google.cloud.automl.v1beta1.ImageObjectDetectionAnnotation.score",
index=1,
number=2,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=194,
serialized_end=306,
)
_VIDEOOBJECTTRACKINGANNOTATION = _descriptor.Descriptor(
name="VideoObjectTrackingAnnotation",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingAnnotation",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="instance_id",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingAnnotation.instance_id",
index=0,
number=1,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=_b("").decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="time_offset",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingAnnotation.time_offset",
index=1,
number=2,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="bounding_box",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingAnnotation.bounding_box",
index=2,
number=3,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="score",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingAnnotation.score",
index=3,
number=4,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=309,
serialized_end=489,
)
_BOUNDINGBOXMETRICSENTRY_CONFIDENCEMETRICSENTRY = _descriptor.Descriptor(
name="ConfidenceMetricsEntry",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.ConfidenceMetricsEntry",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="confidence_threshold",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.ConfidenceMetricsEntry.confidence_threshold",
index=0,
number=1,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="recall",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.ConfidenceMetricsEntry.recall",
index=1,
number=2,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="precision",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.ConfidenceMetricsEntry.precision",
index=2,
number=3,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="f1_score",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.ConfidenceMetricsEntry.f1_score",
index=3,
number=4,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=687,
serialized_end=794,
)
_BOUNDINGBOXMETRICSENTRY = _descriptor.Descriptor(
name="BoundingBoxMetricsEntry",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="iou_threshold",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.iou_threshold",
index=0,
number=1,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="mean_average_precision",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.mean_average_precision",
index=1,
number=2,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="confidence_metrics_entries",
full_name="google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.confidence_metrics_entries",
index=2,
number=3,
type=11,
cpp_type=10,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
],
extensions=[],
nested_types=[_BOUNDINGBOXMETRICSENTRY_CONFIDENCEMETRICSENTRY],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=492,
serialized_end=794,
)
_IMAGEOBJECTDETECTIONEVALUATIONMETRICS = _descriptor.Descriptor(
name="ImageObjectDetectionEvaluationMetrics",
full_name="google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="evaluated_bounding_box_count",
full_name="google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics.evaluated_bounding_box_count",
index=0,
number=1,
type=5,
cpp_type=1,
label=1,
has_default_value=False,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="bounding_box_metrics_entries",
full_name="google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics.bounding_box_metrics_entries",
index=1,
number=2,
type=11,
cpp_type=10,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="bounding_box_mean_average_precision",
full_name="google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics.bounding_box_mean_average_precision",
index=2,
number=3,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=797,
serialized_end=1011,
)
_VIDEOOBJECTTRACKINGEVALUATIONMETRICS = _descriptor.Descriptor(
name="VideoObjectTrackingEvaluationMetrics",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="evaluated_frame_count",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics.evaluated_frame_count",
index=0,
number=1,
type=5,
cpp_type=1,
label=1,
has_default_value=False,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="evaluated_bounding_box_count",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics.evaluated_bounding_box_count",
index=1,
number=2,
type=5,
cpp_type=1,
label=1,
has_default_value=False,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="bounding_box_metrics_entries",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics.bounding_box_metrics_entries",
index=2,
number=4,
type=11,
cpp_type=10,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="bounding_box_mean_average_precision",
full_name="google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics.bounding_box_mean_average_precision",
index=3,
number=6,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=1014,
serialized_end=1258,
)
_IMAGEOBJECTDETECTIONANNOTATION.fields_by_name[
"bounding_box"
].message_type = (
google_dot_cloud_dot_automl__v1beta1_dot_proto_dot_geometry__pb2._BOUNDINGPOLY
)
_VIDEOOBJECTTRACKINGANNOTATION.fields_by_name[
"time_offset"
].message_type = google_dot_protobuf_dot_duration__pb2._DURATION
_VIDEOOBJECTTRACKINGANNOTATION.fields_by_name[
"bounding_box"
].message_type = (
google_dot_cloud_dot_automl__v1beta1_dot_proto_dot_geometry__pb2._BOUNDINGPOLY
)
_BOUNDINGBOXMETRICSENTRY_CONFIDENCEMETRICSENTRY.containing_type = (
_BOUNDINGBOXMETRICSENTRY
)
_BOUNDINGBOXMETRICSENTRY.fields_by_name[
"confidence_metrics_entries"
].message_type = _BOUNDINGBOXMETRICSENTRY_CONFIDENCEMETRICSENTRY
_IMAGEOBJECTDETECTIONEVALUATIONMETRICS.fields_by_name[
"bounding_box_metrics_entries"
].message_type = _BOUNDINGBOXMETRICSENTRY
_VIDEOOBJECTTRACKINGEVALUATIONMETRICS.fields_by_name[
"bounding_box_metrics_entries"
].message_type = _BOUNDINGBOXMETRICSENTRY
DESCRIPTOR.message_types_by_name[
"ImageObjectDetectionAnnotation"
] = _IMAGEOBJECTDETECTIONANNOTATION
DESCRIPTOR.message_types_by_name[
"VideoObjectTrackingAnnotation"
] = _VIDEOOBJECTTRACKINGANNOTATION
DESCRIPTOR.message_types_by_name["BoundingBoxMetricsEntry"] = _BOUNDINGBOXMETRICSENTRY
DESCRIPTOR.message_types_by_name[
"ImageObjectDetectionEvaluationMetrics"
] = _IMAGEOBJECTDETECTIONEVALUATIONMETRICS
DESCRIPTOR.message_types_by_name[
"VideoObjectTrackingEvaluationMetrics"
] = _VIDEOOBJECTTRACKINGEVALUATIONMETRICS
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
ImageObjectDetectionAnnotation = _reflection.GeneratedProtocolMessageType(
"ImageObjectDetectionAnnotation",
(_message.Message,),
dict(
DESCRIPTOR=_IMAGEOBJECTDETECTIONANNOTATION,
__module__="google.cloud.automl_v1beta1.proto.detection_pb2",
__doc__="""Annotation details for image object detection.
Attributes:
bounding_box:
Output only. The rectangle representing the object location.
score:
Output only. The confidence that this annotation is positive
for the parent example, value in [0, 1], higher means higher
positivity confidence.
""",
# @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.ImageObjectDetectionAnnotation)
),
)
_sym_db.RegisterMessage(ImageObjectDetectionAnnotation)
VideoObjectTrackingAnnotation = _reflection.GeneratedProtocolMessageType(
"VideoObjectTrackingAnnotation",
(_message.Message,),
dict(
DESCRIPTOR=_VIDEOOBJECTTRACKINGANNOTATION,
__module__="google.cloud.automl_v1beta1.proto.detection_pb2",
__doc__="""Annotation details for video object tracking.
Attributes:
instance_id:
Optional. The instance of the object, expressed as a positive
integer. Used to tell apart objects of the same type (i.e.
AnnotationSpec) when multiple are present on a single example.
NOTE: Instance ID prediction quality is not a part of model
evaluation and is done as best effort. Especially in cases
when an entity goes off-screen for a longer time (minutes),
when it comes back it may be given a new instance ID.
time_offset:
Required. A time (frame) of a video to which this annotation
pertains. Represented as the duration since the video's start.
bounding_box:
Required. The rectangle representing the object location on
the frame (i.e. at the time\_offset of the video).
score:
Output only. The confidence that this annotation is positive
for the video at the time\_offset, value in [0, 1], higher
means higher positivity confidence. For annotations created by
the user the score is 1. When user approves an annotation, the
original float score is kept (and not changed to 1).
""",
# @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.VideoObjectTrackingAnnotation)
),
)
_sym_db.RegisterMessage(VideoObjectTrackingAnnotation)
BoundingBoxMetricsEntry = _reflection.GeneratedProtocolMessageType(
"BoundingBoxMetricsEntry",
(_message.Message,),
dict(
ConfidenceMetricsEntry=_reflection.GeneratedProtocolMessageType(
"ConfidenceMetricsEntry",
(_message.Message,),
dict(
DESCRIPTOR=_BOUNDINGBOXMETRICSENTRY_CONFIDENCEMETRICSENTRY,
__module__="google.cloud.automl_v1beta1.proto.detection_pb2",
__doc__="""Metrics for a single confidence threshold.
Attributes:
confidence_threshold:
Output only. The confidence threshold value used to compute
the metrics.
recall:
Output only. Recall under the given confidence threshold.
precision:
Output only. Precision under the given confidence threshold.
f1_score:
Output only. The harmonic mean of recall and precision.
""",
# @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.BoundingBoxMetricsEntry.ConfidenceMetricsEntry)
),
),
DESCRIPTOR=_BOUNDINGBOXMETRICSENTRY,
__module__="google.cloud.automl_v1beta1.proto.detection_pb2",
__doc__="""Bounding box matching model metrics for a single intersection-over-union
threshold and multiple label match confidence thresholds.
Attributes:
iou_threshold:
Output only. The intersection-over-union threshold value used
to compute this metrics entry.
mean_average_precision:
Output only. The mean average precision, most often close to
au\_prc.
confidence_metrics_entries:
Output only. Metrics for each label-match
confidence\_threshold from
0.05,0.10,...,0.95,0.96,0.97,0.98,0.99. Precision-recall curve
is derived from them.
""",
# @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.BoundingBoxMetricsEntry)
),
)
_sym_db.RegisterMessage(BoundingBoxMetricsEntry)
_sym_db.RegisterMessage(BoundingBoxMetricsEntry.ConfidenceMetricsEntry)
ImageObjectDetectionEvaluationMetrics = _reflection.GeneratedProtocolMessageType(
"ImageObjectDetectionEvaluationMetrics",
(_message.Message,),
dict(
DESCRIPTOR=_IMAGEOBJECTDETECTIONEVALUATIONMETRICS,
__module__="google.cloud.automl_v1beta1.proto.detection_pb2",
__doc__="""Model evaluation metrics for image object detection problems. Evaluates
prediction quality of labeled bounding boxes.
Attributes:
evaluated_bounding_box_count:
Output only. The total number of bounding boxes (i.e. summed
over all images) the ground truth used to create this
evaluation had.
bounding_box_metrics_entries:
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold
0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and each label
confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
bounding_box_mean_average_precision:
Output only. The single metric for bounding boxes evaluation:
the mean\_average\_precision averaged over all
bounding\_box\_metrics\_entries.
""",
# @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics)
),
)
_sym_db.RegisterMessage(ImageObjectDetectionEvaluationMetrics)
VideoObjectTrackingEvaluationMetrics = _reflection.GeneratedProtocolMessageType(
"VideoObjectTrackingEvaluationMetrics",
(_message.Message,),
dict(
DESCRIPTOR=_VIDEOOBJECTTRACKINGEVALUATIONMETRICS,
__module__="google.cloud.automl_v1beta1.proto.detection_pb2",
__doc__="""Model evaluation metrics for video object tracking problems. Evaluates
prediction quality of both labeled bounding boxes and labeled tracks
(i.e. series of bounding boxes sharing same label and instance ID).
Attributes:
evaluated_frame_count:
Output only. The number of video frames used to create this
evaluation.
evaluated_bounding_box_count:
Output only. The total number of bounding boxes (i.e. summed
over all frames) the ground truth used to create this
evaluation had.
bounding_box_metrics_entries:
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold
0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and each label
confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
bounding_box_mean_average_precision:
Output only. The single metric for bounding boxes evaluation:
the mean\_average\_precision averaged over all
bounding\_box\_metrics\_entries.
""",
# @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics)
),
)
_sym_db.RegisterMessage(VideoObjectTrackingEvaluationMetrics)
DESCRIPTOR._options = None
# @@protoc_insertion_point(module_scope)