Libav
hevc_filter.c
Go to the documentation of this file.
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Seppo Tomperi
6  * Copyright (C) 2013 Wassim Hamidouche
7  *
8  * This file is part of Libav.
9  *
10  * Libav is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * Libav is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with Libav; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include "libavutil/common.h"
26 #include "libavutil/internal.h"
27 
28 #include "cabac_functions.h"
29 #include "hevc.h"
30 
31 #define LUMA 0
32 #define CB 1
33 #define CR 2
34 
35 static const uint8_t tctable[54] = {
36  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
37  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
38  5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
39 };
40 
41 static const uint8_t betatable[52] = {
42  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
43  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
44  38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
45 };
46 
47 static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
48 {
49  static const int qp_c[] = {
50  29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
51  };
52  int qp, qp_i, offset, idxt;
53 
54  // slice qp offset is not used for deblocking
55  if (c_idx == 1)
56  offset = s->ps.pps->cb_qp_offset;
57  else
58  offset = s->ps.pps->cr_qp_offset;
59 
60  qp_i = av_clip(qp_y + offset, 0, 57);
61  if (qp_i < 30)
62  qp = qp_i;
63  else if (qp_i > 43)
64  qp = qp_i - 6;
65  else
66  qp = qp_c[qp_i - 30];
67 
68  idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
69  return tctable[idxt];
70 }
71 
72 static int get_qPy_pred(HEVCContext *s, int xC, int yC,
73  int xBase, int yBase, int log2_cb_size)
74 {
75  HEVCLocalContext *lc = &s->HEVClc;
76  int ctb_size_mask = (1 << s->ps.sps->log2_ctb_size) - 1;
77  int MinCuQpDeltaSizeMask = (1 << (s->ps.sps->log2_ctb_size -
78  s->ps.pps->diff_cu_qp_delta_depth)) - 1;
79  int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
80  int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
81  int min_cb_width = s->ps.sps->min_cb_width;
82  int min_cb_height = s->ps.sps->min_cb_height;
83  int x_cb = xQgBase >> s->ps.sps->log2_min_cb_size;
84  int y_cb = yQgBase >> s->ps.sps->log2_min_cb_size;
85  int availableA = (xBase & ctb_size_mask) &&
86  (xQgBase & ctb_size_mask);
87  int availableB = (yBase & ctb_size_mask) &&
88  (yQgBase & ctb_size_mask);
89  int qPy_pred, qPy_a, qPy_b;
90 
91  // qPy_pred
92  if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
94  qPy_pred = s->sh.slice_qp;
95  } else {
96  qPy_pred = lc->qp_y;
97  if (log2_cb_size < s->ps.sps->log2_ctb_size -
99  static const int offsetX[8][8] = {
100  { -1, 1, 3, 1, 7, 1, 3, 1 },
101  { 0, 0, 0, 0, 0, 0, 0, 0 },
102  { 1, 3, 1, 3, 1, 3, 1, 3 },
103  { 2, 2, 2, 2, 2, 2, 2, 2 },
104  { 3, 5, 7, 5, 3, 5, 7, 5 },
105  { 4, 4, 4, 4, 4, 4, 4, 4 },
106  { 5, 7, 5, 7, 5, 7, 5, 7 },
107  { 6, 6, 6, 6, 6, 6, 6, 6 }
108  };
109  static const int offsetY[8][8] = {
110  { 7, 0, 1, 2, 3, 4, 5, 6 },
111  { 0, 1, 2, 3, 4, 5, 6, 7 },
112  { 1, 0, 3, 2, 5, 4, 7, 6 },
113  { 0, 1, 2, 3, 4, 5, 6, 7 },
114  { 3, 0, 1, 2, 7, 4, 5, 6 },
115  { 0, 1, 2, 3, 4, 5, 6, 7 },
116  { 1, 0, 3, 2, 5, 4, 7, 6 },
117  { 0, 1, 2, 3, 4, 5, 6, 7 }
118  };
119  int xC0b = (xC - (xC & ctb_size_mask)) >> s->ps.sps->log2_min_cb_size;
120  int yC0b = (yC - (yC & ctb_size_mask)) >> s->ps.sps->log2_min_cb_size;
121  int idxX = (xQgBase & ctb_size_mask) >> s->ps.sps->log2_min_cb_size;
122  int idxY = (yQgBase & ctb_size_mask) >> s->ps.sps->log2_min_cb_size;
123  int idx_mask = ctb_size_mask >> s->ps.sps->log2_min_cb_size;
124  int x, y;
125 
126  x = FFMIN(xC0b + offsetX[idxX][idxY], min_cb_width - 1);
127  y = FFMIN(yC0b + (offsetY[idxX][idxY] & idx_mask), min_cb_height - 1);
128 
129  if (xC0b == (lc->start_of_tiles_x >> s->ps.sps->log2_min_cb_size) &&
130  offsetX[idxX][idxY] == -1) {
131  x = (lc->end_of_tiles_x >> s->ps.sps->log2_min_cb_size) - 1;
132  y = yC0b - 1;
133  }
134  qPy_pred = s->qp_y_tab[y * min_cb_width + x];
135  }
136  }
137 
138  // qPy_a
139  if (availableA == 0)
140  qPy_a = qPy_pred;
141  else
142  qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
143 
144  // qPy_b
145  if (availableB == 0)
146  qPy_b = qPy_pred;
147  else
148  qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
149 
150  return (qPy_a + qPy_b + 1) >> 1;
151 }
152 
153 void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC,
154  int xBase, int yBase, int log2_cb_size)
155 {
156  int qp_y = get_qPy_pred(s, xC, yC, xBase, yBase, log2_cb_size);
157 
158  if (s->HEVClc.tu.cu_qp_delta != 0) {
159  int off = s->ps.sps->qp_bd_offset;
160  s->HEVClc.qp_y = FFUMOD(qp_y + s->HEVClc.tu.cu_qp_delta + 52 + 2 * off,
161  52 + off) - off;
162  } else
163  s->HEVClc.qp_y = qp_y;
164 }
165 
166 static int get_qPy(HEVCContext *s, int xC, int yC)
167 {
168  int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
169  int x = xC >> log2_min_cb_size;
170  int y = yC >> log2_min_cb_size;
171  return s->qp_y_tab[x + y * s->ps.sps->min_cb_width];
172 }
173 
174 static void copy_CTB(uint8_t *dst, uint8_t *src,
175  int width, int height, int stride)
176 {
177  int i;
178 
179  for (i = 0; i < height; i++) {
180  memcpy(dst, src, width);
181  dst += stride;
182  src += stride;
183  }
184 }
185 
186 #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
187 
188 static void sao_filter_CTB(HEVCContext *s, int x, int y)
189 {
190  // TODO: This should be easily parallelizable
191  // TODO: skip CBs when (cu_transquant_bypass_flag || (pcm_loop_filter_disable_flag && pcm_flag))
192  int c_idx = 0;
193  int class = 1, class_index;
194  int edges[4]; // 0 left 1 top 2 right 3 bottom
195  SAOParams *sao[4];
196  int classes[4];
197  int x_shift = 0, y_shift = 0;
198  int x_ctb = x >> s->ps.sps->log2_ctb_size;
199  int y_ctb = y >> s->ps.sps->log2_ctb_size;
200  int ctb_addr_rs = y_ctb * s->ps.sps->ctb_width + x_ctb;
201  int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
202 
203  // flags indicating unfilterable edges
204  uint8_t vert_edge[] = { 0, 0, 0, 0 };
205  uint8_t horiz_edge[] = { 0, 0, 0, 0 };
206  uint8_t diag_edge[] = { 0, 0, 0, 0 };
207  uint8_t lfase[3]; // current, above, left
208  uint8_t no_tile_filter = s->ps.pps->tiles_enabled_flag &&
210  uint8_t left_tile_edge = 0, up_tile_edge = 0;
211 
212  sao[0] = &CTB(s->sao, x_ctb, y_ctb);
213  edges[0] = x_ctb == 0;
214  edges[1] = y_ctb == 0;
215  edges[2] = x_ctb == s->ps.sps->ctb_width - 1;
216  edges[3] = y_ctb == s->ps.sps->ctb_height - 1;
217  lfase[0] = CTB(s->filter_slice_edges, x_ctb, y_ctb);
218  classes[0] = 0;
219 
220  if (!edges[0]) {
221  left_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
222  sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb);
223  vert_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
224  vert_edge[2] = vert_edge[0];
225  lfase[2] = CTB(s->filter_slice_edges, x_ctb - 1, y_ctb);
226  classes[class] = 2;
227  class++;
228  x_shift = 8;
229  }
230 
231  if (!edges[1]) {
232  up_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]];
233  sao[class] = &CTB(s->sao, x_ctb, y_ctb - 1);
234  horiz_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
235  horiz_edge[1] = horiz_edge[0];
236  lfase[1] = CTB(s->filter_slice_edges, x_ctb, y_ctb - 1);
237  classes[class] = 1;
238  class++;
239  y_shift = 4;
240 
241  if (!edges[0]) {
242  classes[class] = 3;
243  sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb - 1);
244  class++;
245 
246  // Tile check here is done current CTB row/col, not above/left like you'd expect,
247  //but that is because the tile boundary always extends through the whole pic
248  vert_edge[1] = (!lfase[1] && CTB(s->tab_slice_address, x_ctb, y_ctb - 1) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge;
249  vert_edge[3] = vert_edge[1];
250  horiz_edge[2] = (!lfase[2] && CTB(s->tab_slice_address, x_ctb - 1, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || up_tile_edge;
251  horiz_edge[3] = horiz_edge[2];
252  diag_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
253  diag_edge[3] = diag_edge[0];
254 
255  // Does left CTB comes after above CTB?
256  if (CTB(s->tab_slice_address, x_ctb - 1, y_ctb) >
257  CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
258  diag_edge[2] = !lfase[2] || left_tile_edge || up_tile_edge;
259  diag_edge[1] = diag_edge[2];
260  } else if (CTB(s->tab_slice_address, x_ctb - 1, y_ctb) <
261  CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
262  diag_edge[1] = !lfase[1] || left_tile_edge || up_tile_edge;
263  diag_edge[2] = diag_edge[1];
264  } else {
265  // Same slice, only consider tiles
266  diag_edge[2] = left_tile_edge || up_tile_edge;
267  diag_edge[1] = diag_edge[2];
268  }
269  }
270  }
271 
272  for (c_idx = 0; c_idx < 3; c_idx++) {
273  int chroma = c_idx ? 1 : 0;
274  int x0 = x >> chroma;
275  int y0 = y >> chroma;
276  int stride = s->frame->linesize[c_idx];
277  int ctb_size = (1 << (s->ps.sps->log2_ctb_size)) >> s->ps.sps->hshift[c_idx];
278  int width = FFMIN(ctb_size,
279  (s->ps.sps->width >> s->ps.sps->hshift[c_idx]) - x0);
280  int height = FFMIN(ctb_size,
281  (s->ps.sps->height >> s->ps.sps->vshift[c_idx]) - y0);
282 
283  uint8_t *src = &s->frame->data[c_idx][y0 * stride + (x0 << s->ps.sps->pixel_shift)];
284  uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride + (x0 << s->ps.sps->pixel_shift)];
285  int offset = (y_shift >> chroma) * stride + ((x_shift >> chroma) << s->ps.sps->pixel_shift);
286 
287  copy_CTB(dst - offset, src - offset,
288  (edges[2] ? width + (x_shift >> chroma) : width) << s->ps.sps->pixel_shift,
289  (edges[3] ? height + (y_shift >> chroma) : height), stride);
290 
291  for (class_index = 0; class_index < class; class_index++) {
292 
293  switch (sao[class_index]->type_idx[c_idx]) {
294  case SAO_BAND:
295  s->hevcdsp.sao_band_filter[classes[class_index]](dst, src,
296  stride,
297  sao[class_index],
298  edges, width,
299  height, c_idx);
300  break;
301  case SAO_EDGE:
302  s->hevcdsp.sao_edge_filter[classes[class_index]](dst, src,
303  stride,
304  sao[class_index],
305  edges, width,
306  height, c_idx,
307  vert_edge[classes[class_index]],
308  horiz_edge[classes[class_index]],
309  diag_edge[classes[class_index]]);
310  break;
311  }
312  }
313  }
314 }
315 
316 static int get_pcm(HEVCContext *s, int x, int y)
317 {
318  int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
319  int x_pu, y_pu;
320 
321  if (x < 0 || y < 0)
322  return 2;
323 
324  x_pu = x >> log2_min_pu_size;
325  y_pu = y >> log2_min_pu_size;
326 
327  if (x_pu >= s->ps.sps->min_pu_width || y_pu >= s->ps.sps->min_pu_height)
328  return 2;
329  return s->is_pcm[y_pu * s->ps.sps->min_pu_width + x_pu];
330 }
331 
332 #define TC_CALC(qp, bs) \
333  tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
334  (tc_offset >> 1 << 1), \
335  0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
336 
337 static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
338 {
339  uint8_t *src;
340  int x, y, x_end, y_end, chroma;
341  int c_tc[2], tc[2], beta;
342  uint8_t no_p[2] = { 0 };
343  uint8_t no_q[2] = { 0 };
344 
345  int log2_ctb_size = s->ps.sps->log2_ctb_size;
346  int ctb_size = 1 << log2_ctb_size;
347  int ctb = (x0 >> log2_ctb_size) +
348  (y0 >> log2_ctb_size) * s->ps.sps->ctb_width;
349  int cur_tc_offset = s->deblock[ctb].tc_offset;
350  int cur_beta_offset = s->deblock[ctb].beta_offset;
351  int tc_offset, left_tc_offset, beta_offset, left_beta_offset;
352  int pcmf = (s->ps.sps->pcm_enabled_flag &&
355 
356  if (x0) {
357  left_tc_offset = s->deblock[ctb - 1].tc_offset;
358  left_beta_offset = s->deblock[ctb - 1].beta_offset;
359  }
360 
361  x_end = x0 + ctb_size;
362  if (x_end > s->ps.sps->width)
363  x_end = s->ps.sps->width;
364  y_end = y0 + ctb_size;
365  if (y_end > s->ps.sps->height)
366  y_end = s->ps.sps->height;
367 
368  tc_offset = cur_tc_offset;
369  beta_offset = cur_beta_offset;
370 
371  // vertical filtering luma
372  for (y = y0; y < y_end; y += 8) {
373  for (x = x0 ? x0 : 8; x < x_end; x += 8) {
374  const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
375  const int bs1 = s->vertical_bs[(x >> 3) + ((y + 4) >> 2) * s->bs_width];
376  if (bs0 || bs1) {
377  const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
378 
379  beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
380 
381  tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
382  tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
383  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)];
384  if (pcmf) {
385  no_p[0] = get_pcm(s, x - 1, y);
386  no_p[1] = get_pcm(s, x - 1, y + 4);
387  no_q[0] = get_pcm(s, x, y);
388  no_q[1] = get_pcm(s, x, y + 4);
390  s->frame->linesize[LUMA],
391  beta, tc, no_p, no_q);
392  } else
394  s->frame->linesize[LUMA],
395  beta, tc, no_p, no_q);
396  }
397  }
398  }
399 
400  // vertical filtering chroma
401  for (chroma = 1; chroma <= 2; chroma++) {
402  for (y = y0; y < y_end; y += 16) {
403  for (x = x0 ? x0 : 16; x < x_end; x += 16) {
404  const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
405  const int bs1 = s->vertical_bs[(x >> 3) + ((y + 8) >> 2) * s->bs_width];
406  if ((bs0 == 2) || (bs1 == 2)) {
407  const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
408  const int qp1 = (get_qPy(s, x - 1, y + 8) + get_qPy(s, x, y + 8) + 1) >> 1;
409 
410  c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
411  c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
412  src = &s->frame->data[chroma][y / 2 * s->frame->linesize[chroma] + ((x / 2) << s->ps.sps->pixel_shift)];
413  if (pcmf) {
414  no_p[0] = get_pcm(s, x - 1, y);
415  no_p[1] = get_pcm(s, x - 1, y + 8);
416  no_q[0] = get_pcm(s, x, y);
417  no_q[1] = get_pcm(s, x, y + 8);
419  s->frame->linesize[chroma],
420  c_tc, no_p, no_q);
421  } else
423  s->frame->linesize[chroma],
424  c_tc, no_p, no_q);
425  }
426  }
427  }
428  }
429 
430  // horizontal filtering luma
431  if (x_end != s->ps.sps->width)
432  x_end -= 8;
433  for (y = y0 ? y0 : 8; y < y_end; y += 8) {
434  for (x = x0 ? x0 - 8 : 0; x < x_end; x += 8) {
435  const int bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
436  const int bs1 = s->horizontal_bs[(x + 4 + y * s->bs_width) >> 2];
437  if (bs0 || bs1) {
438  const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
439 
440  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
441  beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
442 
443  beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
444  tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
445  tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
446  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)];
447  if (pcmf) {
448  no_p[0] = get_pcm(s, x, y - 1);
449  no_p[1] = get_pcm(s, x + 4, y - 1);
450  no_q[0] = get_pcm(s, x, y);
451  no_q[1] = get_pcm(s, x + 4, y);
453  s->frame->linesize[LUMA],
454  beta, tc, no_p, no_q);
455  } else
457  s->frame->linesize[LUMA],
458  beta, tc, no_p, no_q);
459  }
460  }
461  }
462 
463  // horizontal filtering chroma
464  for (chroma = 1; chroma <= 2; chroma++) {
465  for (y = y0 ? y0 : 16; y < y_end; y += 16) {
466  for (x = x0 - 8; x < x_end; x += 16) {
467  int bs0, bs1;
468  // to make sure no memory access over boundary when x = -8
469  // TODO: simplify with row based deblocking
470  if (x < 0) {
471  bs0 = 0;
472  bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
473  } else if (x >= x_end - 8) {
474  bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
475  bs1 = 0;
476  } else {
477  bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
478  bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
479  }
480 
481  if ((bs0 == 2) || (bs1 == 2)) {
482  const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0;
483  const int qp1 = bs1 == 2 ? (get_qPy(s, x + 8, y - 1) + get_qPy(s, x + 8, y) + 1) >> 1 : 0;
484 
485  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
486  c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
487  c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
488  src = &s->frame->data[chroma][y / 2 * s->frame->linesize[chroma] + ((x / 2) << s->ps.sps->pixel_shift)];
489  if (pcmf) {
490  no_p[0] = get_pcm(s, x, y - 1);
491  no_p[1] = get_pcm(s, x + 8, y - 1);
492  no_q[0] = get_pcm(s, x, y);
493  no_q[1] = get_pcm(s, x + 8, y);
495  s->frame->linesize[chroma],
496  c_tc, no_p, no_q);
497  } else
499  s->frame->linesize[chroma],
500  c_tc, no_p, no_q);
501  }
502  }
503  }
504  }
505 }
506 
507 static int boundary_strength(HEVCContext *s, MvField *curr,
508  uint8_t curr_cbf_luma, MvField *neigh,
509  uint8_t neigh_cbf_luma,
510  RefPicList *neigh_refPicList,
511  int tu_border)
512 {
513  int mvs = curr->pred_flag[0] + curr->pred_flag[1];
514 
515  if (tu_border) {
516  if (curr->is_intra || neigh->is_intra)
517  return 2;
518  if (curr_cbf_luma || neigh_cbf_luma)
519  return 1;
520  }
521 
522  if (mvs == neigh->pred_flag[0] + neigh->pred_flag[1]) {
523  if (mvs == 2) {
524  // same L0 and L1
525  if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
526  s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
527  neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
528  if ((abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
529  abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
530  (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
531  abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4))
532  return 1;
533  else
534  return 0;
535  } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
536  neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
537  if (abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
538  abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4)
539  return 1;
540  else
541  return 0;
542  } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
543  neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
544  if (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
545  abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4)
546  return 1;
547  else
548  return 0;
549  } else {
550  return 1;
551  }
552  } else { // 1 MV
553  Mv A, B;
554  int ref_A, ref_B;
555 
556  if (curr->pred_flag[0]) {
557  A = curr->mv[0];
558  ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
559  } else {
560  A = curr->mv[1];
561  ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
562  }
563 
564  if (neigh->pred_flag[0]) {
565  B = neigh->mv[0];
566  ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
567  } else {
568  B = neigh->mv[1];
569  ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
570  }
571 
572  if (ref_A == ref_B) {
573  if (abs(A.x - B.x) >= 4 || abs(A.y - B.y) >= 4)
574  return 1;
575  else
576  return 0;
577  } else
578  return 1;
579  }
580  }
581 
582  return 1;
583 }
584 
586  int log2_trafo_size)
587 {
588  HEVCLocalContext *lc = &s->HEVClc;
589  MvField *tab_mvf = s->ref->tab_mvf;
590  int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
591  int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
592  int min_pu_width = s->ps.sps->min_pu_width;
593  int min_tu_width = s->ps.sps->min_tb_width;
594  int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
595  (x0 >> log2_min_pu_size)].is_intra;
596  int boundary_upper, boundary_left;
597  int i, j, bs;
598 
599  boundary_upper = y0 > 0 && !(y0 & 7);
600  if (boundary_upper &&
603  (y0 % (1 << s->ps.sps->log2_ctb_size)) == 0) ||
606  (y0 % (1 << s->ps.sps->log2_ctb_size)) == 0)))
607  boundary_upper = 0;
608 
609  if (boundary_upper) {
610  RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
611  ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) :
612  s->ref->refPicList;
613 
614  int yp_pu = (y0 - 1) >> log2_min_pu_size;
615  int yq_pu = y0 >> log2_min_pu_size;
616  int yp_tu = (y0 - 1) >> log2_min_tu_size;
617  int yq_tu = y0 >> log2_min_tu_size;
618 
619  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
620  int x_pu = (x0 + i) >> log2_min_pu_size;
621  int x_tu = (x0 + i) >> log2_min_tu_size;
622  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
623  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
624  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
625  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
626 
627  bs = boundary_strength(s, curr, curr_cbf_luma,
628  top, top_cbf_luma, rpl_top, 1);
629  if (bs)
630  s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
631  }
632  }
633 
634  // bs for TU internal horizontal PU boundaries
635  if (log2_trafo_size > s->ps.sps->log2_min_pu_size && !is_intra) {
636  RefPicList *rpl = s->ref->refPicList;
637 
638  for (j = 8; j < (1 << log2_trafo_size); j += 8) {
639  int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
640  int yq_pu = (y0 + j) >> log2_min_pu_size;
641  int yp_tu = (y0 + j - 1) >> log2_min_tu_size;
642  int yq_tu = (y0 + j) >> log2_min_tu_size;
643 
644  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
645  int x_pu = (x0 + i) >> log2_min_pu_size;
646  int x_tu = (x0 + i) >> log2_min_tu_size;
647  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
648  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
649  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
650  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
651 
652  bs = boundary_strength(s, curr, curr_cbf_luma,
653  top, top_cbf_luma, rpl, 0);
654  if (bs)
655  s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
656  }
657  }
658  }
659 
660  // bs for vertical TU boundaries
661  boundary_left = x0 > 0 && !(x0 & 7);
662  if (boundary_left &&
665  (x0 % (1 << s->ps.sps->log2_ctb_size)) == 0) ||
668  (x0 % (1 << s->ps.sps->log2_ctb_size)) == 0)))
669  boundary_left = 0;
670 
671  if (boundary_left) {
672  RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
673  ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) :
674  s->ref->refPicList;
675 
676  int xp_pu = (x0 - 1) >> log2_min_pu_size;
677  int xq_pu = x0 >> log2_min_pu_size;
678  int xp_tu = (x0 - 1) >> log2_min_tu_size;
679  int xq_tu = x0 >> log2_min_tu_size;
680 
681  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
682  int y_pu = (y0 + i) >> log2_min_pu_size;
683  int y_tu = (y0 + i) >> log2_min_tu_size;
684  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
685  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
686 
687  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
688  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
689 
690  bs = boundary_strength(s, curr, curr_cbf_luma,
691  left, left_cbf_luma, rpl_left, 1);
692  if (bs)
693  s->vertical_bs[(x0 >> 3) + ((y0 + i) >> 2) * s->bs_width] = bs;
694  }
695  }
696 
697  // bs for TU internal vertical PU boundaries
698  if (log2_trafo_size > log2_min_pu_size && !is_intra) {
699  RefPicList *rpl = s->ref->refPicList;
700 
701  for (j = 0; j < (1 << log2_trafo_size); j += 4) {
702  int y_pu = (y0 + j) >> log2_min_pu_size;
703  int y_tu = (y0 + j) >> log2_min_tu_size;
704 
705  for (i = 8; i < (1 << log2_trafo_size); i += 8) {
706  int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
707  int xq_pu = (x0 + i) >> log2_min_pu_size;
708  int xp_tu = (x0 + i - 1) >> log2_min_tu_size;
709  int xq_tu = (x0 + i) >> log2_min_tu_size;
710  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
711  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
712  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
713  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
714 
715  bs = boundary_strength(s, curr, curr_cbf_luma,
716  left, left_cbf_luma, rpl, 0);
717  if (bs)
718  s->vertical_bs[((x0 + i) >> 3) + ((y0 + j) >> 2) * s->bs_width] = bs;
719  }
720  }
721  }
722 }
723 
724 #undef LUMA
725 #undef CB
726 #undef CR
727 
728 void ff_hevc_hls_filter(HEVCContext *s, int x, int y)
729 {
730  deblocking_filter_CTB(s, x, y);
731  if (s->ps.sps->sao_enabled)
732  sao_filter_CTB(s, x, y);
733 }
734 
735 void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
736 {
737  if (y_ctb && x_ctb)
738  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size);
739  if (y_ctb && x_ctb >= s->ps.sps->width - ctb_size) {
740  ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size);
741  ff_thread_report_progress(&s->ref->tf, y_ctb - ctb_size, 0);
742  }
743  if (x_ctb && y_ctb >= s->ps.sps->height - ctb_size)
744  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb);
745 }
const HEVCPPS * pps
Definition: hevc.h:538
unsigned int log2_min_cb_size
Definition: hevc.h:437
void(* hevc_h_loop_filter_luma_c)(uint8_t *pix, ptrdiff_t stride, int beta, int *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:102
HEVCFrame * ref
Definition: hevc.h:788
Definition: hevc.h:635
int ctb_height
Definition: hevc.h:451
uint8_t is_cu_qp_delta_coded
Definition: hevc.h:665
void(* hevc_h_loop_filter_chroma_c)(uint8_t *pix, ptrdiff_t stride, int *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:108
int16_t x
horizontal component of motion vector
Definition: hevc.h:631
void(* hevc_v_loop_filter_chroma)(uint8_t *pix, ptrdiff_t stride, int *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:100
MvField * tab_mvf
Definition: hevc.h:680
int bs_width
Definition: hevc.h:795
AVFrame * sao_frame
Definition: hevc.h:771
int vshift[3]
Definition: hevc.h:461
int tc_offset
Definition: hevc.h:670
Definition: hevc.h:247
HEVCParamSets ps
Definition: hevc.h:775
int min_cb_height
Definition: hevc.h:454
int list[MAX_REFS]
Definition: hevc.h:279
int stride
Definition: mace.c:144
int width
Definition: hevc.h:448
int qp_bd_offset
Definition: hevc.h:463
static int get_qPy_pred(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
Definition: hevc_filter.c:72
int pixel_shift
Definition: hevc.h:397
static void copy_CTB(uint8_t *dst, uint8_t *src, int width, int height, int stride)
Definition: hevc_filter.c:174
static void sao_filter_CTB(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:188
#define LUMA
Definition: hevc_filter.c:31
int end_of_tiles_x
Definition: hevc.h:741
void ff_hevc_hls_filter(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:728
uint8_t
Definition: vf_drawbox.c:37
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size)
Definition: hevc_filter.c:585
int min_tb_width
Definition: hevc.h:455
SAOParams * sao
Definition: hevc.h:784
void(* sao_band_filter[4])(uint8_t *dst, uint8_t *src, ptrdiff_t stride, struct SAOParams *sao, int *borders, int width, int height, int c_idx)
Definition: hevcdsp.h:52
int min_cb_width
Definition: hevc.h:453
void(* hevc_h_loop_filter_luma)(uint8_t *pix, ptrdiff_t stride, int beta, int *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:92
ThreadFrame tf
Definition: hevc.h:679
static const uint8_t tctable[54]
Definition: hevc_filter.c:35
int8_t * qp_y_tab
Definition: hevc.h:804
uint8_t loop_filter_disable_flag
Definition: hevc.h:432
#define B
Definition: huffyuv.h:49
static const uint8_t betatable[52]
Definition: hevc_filter.c:41
uint8_t transquant_bypass_enable_flag
Definition: hevc.h:489
#define FFUMOD(a, b)
Definition: hevc.h:89
uint8_t first_qp_group
Definition: hevc.h:726
HEVCDSPContext hevcdsp
Definition: hevc.h:801
#define BOUNDARY_UPPER_SLICE
Definition: hevc.h:752
#define src
Definition: vp8dsp.c:254
void(* sao_edge_filter[4])(uint8_t *dst, uint8_t *src, ptrdiff_t stride, struct SAOParams *sao, int *borders, int width, int height, int c_idx, uint8_t vert_edge, uint8_t horiz_edge, uint8_t diag_edge)
Definition: hevcdsp.h:55
int min_pu_height
Definition: hevc.h:458
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
Definition: hevc_filter.c:735
RefPicList * refPicList
Definition: hevc.h:681
HEVCLocalContext HEVClc
Definition: hevc.h:763
unsigned int log2_ctb_size
Definition: hevc.h:441
#define TC_CALC(qp, bs)
Definition: hevc_filter.c:332
int8_t slice_qp
Definition: hevc.h:594
void(* hevc_h_loop_filter_chroma)(uint8_t *pix, ptrdiff_t stride, int *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:98
uint8_t * vertical_bs
Definition: hevc.h:806
uint8_t tiles_enabled_flag
Definition: hevc.h:492
common internal API header
const HEVCSPS * sps
Definition: hevc.h:537
uint8_t is_intra
Definition: hevc.h:639
#define FFMIN(a, b)
Definition: common.h:66
int hshift[3]
Definition: hevc.h:460
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
int8_t qp_y
Definition: hevc.h:731
Context Adaptive Binary Arithmetic Coder inline functions.
int ctb_width
Definition: hevc.h:450
int height
Definition: hevc.h:449
if(ac->has_optimized_func)
static int width
Definition: utils.c:156
int * ctb_addr_rs_to_ts
CtbAddrRSToTS.
Definition: hevc.h:523
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:158
unsigned int log2_min_pu_size
Definition: hevc.h:442
int8_t pred_flag[2]
Definition: hevc.h:638
uint8_t sao_enabled
Definition: hevc.h:420
int16_t y
vertical component of motion vector
Definition: hevc.h:632
uint8_t loop_filter_across_tiles_enabled_flag
Definition: hevc.h:498
TransformUnit tu
Definition: hevc.h:734
int cu_qp_delta
Definition: hevc.h:661
uint8_t * is_pcm
Definition: hevc.h:817
#define CTB(tab, x, y)
Definition: hevc_filter.c:186
AVFrame * frame
Definition: hevc.h:770
void(* hevc_v_loop_filter_chroma_c)(uint8_t *pix, ptrdiff_t stride, int *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:111
DBParams * deblock
Definition: hevc.h:785
unsigned int log2_min_tb_size
Definition: hevc.h:439
static int get_qPy(HEVCContext *s, int xC, int yC)
Definition: hevc_filter.c:166
static int boundary_strength(HEVCContext *s, MvField *curr, uint8_t curr_cbf_luma, MvField *neigh, uint8_t neigh_cbf_luma, RefPicList *neigh_refPicList, int tu_border)
Definition: hevc_filter.c:507
int start_of_tiles_x
Definition: hevc.h:740
Definition: hevc.h:630
int * tile_id
TileId.
Definition: hevc.h:525
int cr_qp_offset
Definition: hevc.h:484
static int get_pcm(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:316
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:146
#define DEFAULT_INTRA_TC_OFFSET
Definition: hevc.h:62
int height
Definition: gxfenc.c:72
RefPicList * ff_hevc_get_ref_list(HEVCContext *s, HEVCFrame *frame, int x0, int y0)
Definition: hevc_refs.c:56
void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
Definition: hevc_filter.c:153
Mv mv[2]
Definition: hevc.h:636
static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
Definition: hevc_filter.c:47
int8_t ref_idx[2]
Definition: hevc.h:637
common internal and external API header
uint8_t * horizontal_bs
Definition: hevc.h:805
Definition: hevc.h:246
#define BOUNDARY_LEFT_SLICE
Definition: hevc.h:750
int32_t * tab_slice_address
Definition: hevc.h:808
void(* hevc_v_loop_filter_luma)(uint8_t *pix, ptrdiff_t stride, int beta, int *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:95
#define MAX_QP
Definition: hevc.h:61
uint8_t * filter_slice_edges
Definition: hevc.h:820
uint8_t slice_loop_filter_across_slices_enabled_flag
Definition: hevc.h:578
int min_pu_width
Definition: hevc.h:457
int beta_offset
Definition: hevc.h:669
struct HEVCSPS::@22 pcm
int boundary_flags
Definition: hevc.h:756
int diff_cu_qp_delta_depth
Definition: hevc.h:481
int cb_qp_offset
Definition: hevc.h:483
#define BOUNDARY_LEFT_TILE
Definition: hevc.h:751
uint8_t * cbf_luma
Definition: hevc.h:816
SliceHeader sh
Definition: hevc.h:783
int pcm_enabled_flag
Definition: hevc.h:401
void(* hevc_v_loop_filter_luma_c)(uint8_t *pix, ptrdiff_t stride, int beta, int *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:105
static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
Definition: hevc_filter.c:337
#define BOUNDARY_UPPER_TILE
Definition: hevc.h:753