49 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
63 # define ROT(x, s) ((x >> s) | (x << (32-s))) 65 # define ROT(x, s) ((x << s) | (x >> (32-s))) 71 dst->
u64[0] = src->
u64[0] ^ round_key->
u64[0];
72 dst->
u64[1] = src->
u64[1] ^ round_key->
u64[1];
94 s0[0].
u8[ 0] = box[s0[1].
u8[ 0]];
95 s0[0].
u8[ 4] = box[s0[1].
u8[ 4]];
96 s0[0].
u8[ 8] = box[s0[1].
u8[ 8]];
97 s0[0].
u8[12] = box[s0[1].
u8[12]];
98 s1[0].
u8[ 3] = box[s1[1].
u8[ 7]];
99 s1[0].
u8[ 7] = box[s1[1].
u8[11]];
100 s1[0].
u8[11] = box[s1[1].
u8[15]];
101 s1[0].
u8[15] = box[s1[1].
u8[ 3]];
102 s0[0].
u8[ 2] = box[s0[1].
u8[10]];
103 s0[0].
u8[10] = box[s0[1].
u8[ 2]];
104 s0[0].
u8[ 6] = box[s0[1].
u8[14]];
105 s0[0].
u8[14] = box[s0[1].
u8[ 6]];
106 s3[0].
u8[ 1] = box[s3[1].
u8[13]];
107 s3[0].
u8[13] = box[s3[1].
u8[ 9]];
108 s3[0].
u8[ 9] = box[s3[1].
u8[ 5]];
109 s3[0].
u8[ 5] = box[s3[1].
u8[ 1]];
112 static inline int mix_core(uint32_t multbl[][256],
int a,
int b,
int c,
int d)
115 return multbl[0][
a] ^
ROT(multbl[0][b], 8) ^
ROT(multbl[0][c], 16) ^
ROT(multbl[0][d], 24);
117 return multbl[0][
a] ^ multbl[1][
b] ^ multbl[2][c] ^ multbl[3][d];
131 uint32_t multbl[][256])
135 for (r = a->
rounds - 1; r > 0; r--) {
136 mix(a->
state, multbl, 3 - s, 1 + s);
144 int count,
uint8_t *iv,
int decrypt)
174 for (i = 0; i < 256; i++) {
179 k = alog8[x + log8[c[0]]];
180 l = alog8[x + log8[c[1]]];
181 m = alog8[x + log8[c[2]]];
182 n = alog8[x + log8[c[3]]];
185 tbl[1][i] =
ROT(tbl[0][i], 8);
186 tbl[2][i] =
ROT(tbl[0][i], 16);
187 tbl[3][i] =
ROT(tbl[0][i], 24);
196 int i, j, t, rconpointer = 0;
198 int KC = key_bits >> 5;
205 for (i = 0; i < 255; i++) {
206 alog8[i] = alog8[i + 255] = j;
212 for (i = 0; i < 256; i++) {
213 j = i ? alog8[255 - log8[i]] : 0;
214 j ^= (j << 1) ^ (j << 2) ^ (j << 3) ^ (j << 4);
215 j = (j ^ (j >> 8) ^ 99) & 255;
225 if (key_bits != 128 && key_bits != 192 && key_bits != 256)
230 memcpy(tk, key, KC * 4);
233 for (t = KC * 4; t < (rounds + 1) * 16; t += KC * 4) {
234 for (i = 0; i < 4; i++)
235 tk[0][i] ^=
sbox[tk[KC - 1][(i + 1) & 3]];
236 tk[0][0] ^=
rcon[rconpointer++];
238 for (j = 1; j < KC; j++) {
239 if (KC != 8 || j != KC >> 1)
240 for (i = 0; i < 4; i++)
241 tk[j][i] ^= tk[j - 1][i];
243 for (i = 0; i < 4; i++)
244 tk[j][i] ^=
sbox[tk[j - 1][i]];
251 for (i = 1; i <
rounds; i++) {
259 for (i = 0; i < (rounds + 1) >> 1; i++)
static uint8_t inv_sbox[256]
av_aes_block round_key[15]
void av_aes_crypt(AVAES *a, uint8_t *dst, const uint8_t *src, int count, uint8_t *iv, int decrypt)
Encrypt or decrypt a buffer using a previously initialized context.
#define FF_ARRAY_ELEMS(a)
static void addkey(av_aes_block *dst, const av_aes_block *src, const av_aes_block *round_key)
static void mix(av_aes_block state[2], uint32_t multbl[][256], int s1, int s3)
static uint32_t enc_multbl[4][256]
high precision timer, useful to profile code
static void subshift(av_aes_block s0[2], int s, const uint8_t *box)
static void crypt(AVAES *a, int s, const uint8_t *sbox, uint32_t multbl[][256])
static const uint8_t rcon[10]
struct AVAES * av_aes_alloc(void)
Allocate an AVAES context.
static void addkey_d(uint8_t *dst, const av_aes_block *src, const av_aes_block *round_key)
static int mix_core(uint32_t multbl[][256], int a, int b, int c, int d)
static void addkey_s(av_aes_block *dst, const uint8_t *src, const av_aes_block *round_key)
int av_aes_init(AVAES *a, const uint8_t *key, int key_bits, int decrypt)
Initialize an AVAES context.
static void init_multbl2(uint32_t tbl[][256], const int c[4], const uint8_t *log8, const uint8_t *alog8, const uint8_t *sbox)
static uint32_t dec_multbl[4][256]
common internal and external API header
#define MKBETAG(a, b, c, d)
#define FFSWAP(type, a, b)
#define MKTAG(a, b, c, d)
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...