Libav
mpeg4videoenc.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 encoder
3  * Copyright (c) 2000,2001 Fabrice Bellard
4  * Copyright (c) 2002-2010 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include "libavutil/attributes.h"
24 #include "libavutil/log.h"
25 #include "libavutil/opt.h"
26 #include "mpegutils.h"
27 #include "mpegvideo.h"
28 #include "h263.h"
29 #include "mpeg4video.h"
30 
31 /* The uni_DCtab_* tables below contain unified bits+length tables to encode DC
32  * differences in MPEG-4. Unified in the sense that the specification specifies
33  * this encoding in several steps. */
36 static uint16_t uni_DCtab_lum_bits[512];
37 static uint16_t uni_DCtab_chrom_bits[512];
38 
39 /* Unified encoding tables for run length encoding of coefficients.
40  * Unified in the sense that the specification specifies the encoding in several steps. */
41 static uint32_t uni_mpeg4_intra_rl_bits[64 * 64 * 2 * 2];
42 static uint8_t uni_mpeg4_intra_rl_len[64 * 64 * 2 * 2];
43 static uint32_t uni_mpeg4_inter_rl_bits[64 * 64 * 2 * 2];
44 static uint8_t uni_mpeg4_inter_rl_len[64 * 64 * 2 * 2];
45 
46 //#define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 + (run) * 256 + (level))
47 //#define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 * 64 + (run) + (level) * 64)
48 #define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 * 64 + (run) * 128 + (level))
49 
50 /* MPEG-4
51  * inter
52  * max level: 24/6
53  * max run: 53/63
54  *
55  * intra
56  * max level: 53/16
57  * max run: 29/41
58  */
59 
64 static inline int get_block_rate(MpegEncContext *s, int16_t block[64],
65  int block_last_index, uint8_t scantable[64])
66 {
67  int last = 0;
68  int j;
69  int rate = 0;
70 
71  for (j = 1; j <= block_last_index; j++) {
72  const int index = scantable[j];
73  int level = block[index];
74  if (level) {
75  level += 64;
76  if ((level & (~127)) == 0) {
77  if (j < block_last_index)
78  rate += s->intra_ac_vlc_length[UNI_AC_ENC_INDEX(j - last - 1, level)];
79  else
80  rate += s->intra_ac_vlc_last_length[UNI_AC_ENC_INDEX(j - last - 1, level)];
81  } else
82  rate += s->ac_esc_length;
83 
84  last = j;
85  }
86  }
87 
88  return rate;
89 }
90 
99 static inline void restore_ac_coeffs(MpegEncContext *s, int16_t block[6][64],
100  const int dir[6], uint8_t *st[6],
101  const int zigzag_last_index[6])
102 {
103  int i, n;
104  memcpy(s->block_last_index, zigzag_last_index, sizeof(int) * 6);
105 
106  for (n = 0; n < 6; n++) {
107  int16_t *ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
108 
109  st[n] = s->intra_scantable.permutated;
110  if (dir[n]) {
111  /* top prediction */
112  for (i = 1; i < 8; i++)
113  block[n][s->idsp.idct_permutation[i]] = ac_val[i + 8];
114  } else {
115  /* left prediction */
116  for (i = 1; i < 8; i++)
117  block[n][s->idsp.idct_permutation[i << 3]] = ac_val[i];
118  }
119  }
120 }
121 
130 static inline int decide_ac_pred(MpegEncContext *s, int16_t block[6][64],
131  const int dir[6], uint8_t *st[6],
132  int zigzag_last_index[6])
133 {
134  int score = 0;
135  int i, n;
136  int8_t *const qscale_table = s->current_picture.qscale_table;
137 
138  memcpy(zigzag_last_index, s->block_last_index, sizeof(int) * 6);
139 
140  for (n = 0; n < 6; n++) {
141  int16_t *ac_val, *ac_val1;
142 
143  score -= get_block_rate(s, block[n], s->block_last_index[n],
145 
146  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
147  ac_val1 = ac_val;
148  if (dir[n]) {
149  const int xy = s->mb_x + s->mb_y * s->mb_stride - s->mb_stride;
150  /* top prediction */
151  ac_val -= s->block_wrap[n] * 16;
152  if (s->mb_y == 0 || s->qscale == qscale_table[xy] || n == 2 || n == 3) {
153  /* same qscale */
154  for (i = 1; i < 8; i++) {
155  const int level = block[n][s->idsp.idct_permutation[i]];
156  block[n][s->idsp.idct_permutation[i]] = level - ac_val[i + 8];
157  ac_val1[i] = block[n][s->idsp.idct_permutation[i << 3]];
158  ac_val1[i + 8] = level;
159  }
160  } else {
161  /* different qscale, we must rescale */
162  for (i = 1; i < 8; i++) {
163  const int level = block[n][s->idsp.idct_permutation[i]];
164  block[n][s->idsp.idct_permutation[i]] = level - ROUNDED_DIV(ac_val[i + 8] * qscale_table[xy], s->qscale);
165  ac_val1[i] = block[n][s->idsp.idct_permutation[i << 3]];
166  ac_val1[i + 8] = level;
167  }
168  }
169  st[n] = s->intra_h_scantable.permutated;
170  } else {
171  const int xy = s->mb_x - 1 + s->mb_y * s->mb_stride;
172  /* left prediction */
173  ac_val -= 16;
174  if (s->mb_x == 0 || s->qscale == qscale_table[xy] || n == 1 || n == 3) {
175  /* same qscale */
176  for (i = 1; i < 8; i++) {
177  const int level = block[n][s->idsp.idct_permutation[i << 3]];
178  block[n][s->idsp.idct_permutation[i << 3]] = level - ac_val[i];
179  ac_val1[i] = level;
180  ac_val1[i + 8] = block[n][s->idsp.idct_permutation[i]];
181  }
182  } else {
183  /* different qscale, we must rescale */
184  for (i = 1; i < 8; i++) {
185  const int level = block[n][s->idsp.idct_permutation[i << 3]];
186  block[n][s->idsp.idct_permutation[i << 3]] = level - ROUNDED_DIV(ac_val[i] * qscale_table[xy], s->qscale);
187  ac_val1[i] = level;
188  ac_val1[i + 8] = block[n][s->idsp.idct_permutation[i]];
189  }
190  }
191  st[n] = s->intra_v_scantable.permutated;
192  }
193 
194  for (i = 63; i > 0; i--) // FIXME optimize
195  if (block[n][st[n][i]])
196  break;
197  s->block_last_index[n] = i;
198 
199  score += get_block_rate(s, block[n], s->block_last_index[n], st[n]);
200  }
201 
202  if (score < 0) {
203  return 1;
204  } else {
205  restore_ac_coeffs(s, block, dir, st, zigzag_last_index);
206  return 0;
207  }
208 }
209 
214 {
215  int i;
216  int8_t *const qscale_table = s->current_picture.qscale_table;
217 
219 
220  if (s->pict_type == AV_PICTURE_TYPE_B) {
221  int odd = 0;
222  /* ok, come on, this isn't funny anymore, there's more code for
223  * handling this MPEG-4 mess than for the actual adaptive quantization */
224 
225  for (i = 0; i < s->mb_num; i++) {
226  int mb_xy = s->mb_index2xy[i];
227  odd += qscale_table[mb_xy] & 1;
228  }
229 
230  if (2 * odd > s->mb_num)
231  odd = 1;
232  else
233  odd = 0;
234 
235  for (i = 0; i < s->mb_num; i++) {
236  int mb_xy = s->mb_index2xy[i];
237  if ((qscale_table[mb_xy] & 1) != odd)
238  qscale_table[mb_xy]++;
239  if (qscale_table[mb_xy] > 31)
240  qscale_table[mb_xy] = 31;
241  }
242 
243  for (i = 1; i < s->mb_num; i++) {
244  int mb_xy = s->mb_index2xy[i];
245  if (qscale_table[mb_xy] != qscale_table[s->mb_index2xy[i - 1]] &&
246  (s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_DIRECT)) {
247  s->mb_type[mb_xy] |= CANDIDATE_MB_TYPE_BIDIR;
248  }
249  }
250  }
251 }
252 
257 static inline void mpeg4_encode_dc(PutBitContext *s, int level, int n)
258 {
259  /* DC will overflow if level is outside the [-255,255] range. */
260  level += 256;
261  if (n < 4) {
262  /* luminance */
263  put_bits(s, uni_DCtab_lum_len[level], uni_DCtab_lum_bits[level]);
264  } else {
265  /* chrominance */
267  }
268 }
269 
270 static inline int mpeg4_get_dc_length(int level, int n)
271 {
272  if (n < 4)
273  return uni_DCtab_lum_len[level + 256];
274  else
275  return uni_DCtab_chrom_len[level + 256];
276 }
277 
282 static inline void mpeg4_encode_block(MpegEncContext *s,
283  int16_t *block, int n, int intra_dc,
284  uint8_t *scan_table, PutBitContext *dc_pb,
285  PutBitContext *ac_pb)
286 {
287  int i, last_non_zero;
288  uint32_t *bits_tab;
289  uint8_t *len_tab;
290  const int last_index = s->block_last_index[n];
291 
292  if (s->mb_intra) { // Note gcc (3.2.1 at least) will optimize this away
293  /* MPEG-4 based DC predictor */
294  mpeg4_encode_dc(dc_pb, intra_dc, n);
295  if (last_index < 1)
296  return;
297  i = 1;
298  bits_tab = uni_mpeg4_intra_rl_bits;
299  len_tab = uni_mpeg4_intra_rl_len;
300  } else {
301  if (last_index < 0)
302  return;
303  i = 0;
304  bits_tab = uni_mpeg4_inter_rl_bits;
305  len_tab = uni_mpeg4_inter_rl_len;
306  }
307 
308  /* AC coefs */
309  last_non_zero = i - 1;
310  for (; i < last_index; i++) {
311  int level = block[scan_table[i]];
312  if (level) {
313  int run = i - last_non_zero - 1;
314  level += 64;
315  if ((level & (~127)) == 0) {
316  const int index = UNI_MPEG4_ENC_INDEX(0, run, level);
317  put_bits(ac_pb, len_tab[index], bits_tab[index]);
318  } else { // ESC3
319  put_bits(ac_pb,
320  7 + 2 + 1 + 6 + 1 + 12 + 1,
321  (3 << 23) + (3 << 21) + (0 << 20) + (run << 14) +
322  (1 << 13) + (((level - 64) & 0xfff) << 1) + 1);
323  }
324  last_non_zero = i;
325  }
326  }
327  /* if (i <= last_index) */ {
328  int level = block[scan_table[i]];
329  int run = i - last_non_zero - 1;
330  level += 64;
331  if ((level & (~127)) == 0) {
332  const int index = UNI_MPEG4_ENC_INDEX(1, run, level);
333  put_bits(ac_pb, len_tab[index], bits_tab[index]);
334  } else { // ESC3
335  put_bits(ac_pb,
336  7 + 2 + 1 + 6 + 1 + 12 + 1,
337  (3 << 23) + (3 << 21) + (1 << 20) + (run << 14) +
338  (1 << 13) + (((level - 64) & 0xfff) << 1) + 1);
339  }
340  }
341 }
342 
344  int16_t *block, int n,
345  int intra_dc, uint8_t *scan_table)
346 {
347  int i, last_non_zero;
348  uint8_t *len_tab;
349  const int last_index = s->block_last_index[n];
350  int len = 0;
351 
352  if (s->mb_intra) { // Note gcc (3.2.1 at least) will optimize this away
353  /* MPEG-4 based DC predictor */
354  len += mpeg4_get_dc_length(intra_dc, n);
355  if (last_index < 1)
356  return len;
357  i = 1;
358  len_tab = uni_mpeg4_intra_rl_len;
359  } else {
360  if (last_index < 0)
361  return 0;
362  i = 0;
363  len_tab = uni_mpeg4_inter_rl_len;
364  }
365 
366  /* AC coefs */
367  last_non_zero = i - 1;
368  for (; i < last_index; i++) {
369  int level = block[scan_table[i]];
370  if (level) {
371  int run = i - last_non_zero - 1;
372  level += 64;
373  if ((level & (~127)) == 0) {
374  const int index = UNI_MPEG4_ENC_INDEX(0, run, level);
375  len += len_tab[index];
376  } else { // ESC3
377  len += 7 + 2 + 1 + 6 + 1 + 12 + 1;
378  }
379  last_non_zero = i;
380  }
381  }
382  /* if (i <= last_index) */ {
383  int level = block[scan_table[i]];
384  int run = i - last_non_zero - 1;
385  level += 64;
386  if ((level & (~127)) == 0) {
387  const int index = UNI_MPEG4_ENC_INDEX(1, run, level);
388  len += len_tab[index];
389  } else { // ESC3
390  len += 7 + 2 + 1 + 6 + 1 + 12 + 1;
391  }
392  }
393 
394  return len;
395 }
396 
397 static inline void mpeg4_encode_blocks(MpegEncContext *s, int16_t block[6][64],
398  int intra_dc[6], uint8_t **scan_table,
399  PutBitContext *dc_pb,
400  PutBitContext *ac_pb)
401 {
402  int i;
403 
404  if (scan_table) {
406  for (i = 0; i < 6; i++)
407  skip_put_bits(&s->pb,
408  mpeg4_get_block_length(s, block[i], i,
409  intra_dc[i], scan_table[i]));
410  } else {
411  /* encode each block */
412  for (i = 0; i < 6; i++)
413  mpeg4_encode_block(s, block[i], i,
414  intra_dc[i], scan_table[i], dc_pb, ac_pb);
415  }
416  } else {
418  for (i = 0; i < 6; i++)
419  skip_put_bits(&s->pb,
420  mpeg4_get_block_length(s, block[i], i, 0,
422  } else {
423  /* encode each block */
424  for (i = 0; i < 6; i++)
425  mpeg4_encode_block(s, block[i], i, 0,
426  s->intra_scantable.permutated, dc_pb, ac_pb);
427  }
428  }
429 }
430 
431 static inline int get_b_cbp(MpegEncContext *s, int16_t block[6][64],
432  int motion_x, int motion_y, int mb_type)
433 {
434  int cbp = 0, i;
435 
436  if (s->mpv_flags & FF_MPV_FLAG_CBP_RD) {
437  int score = 0;
438  const int lambda = s->lambda2 >> (FF_LAMBDA_SHIFT - 6);
439 
440  for (i = 0; i < 6; i++) {
441  if (s->coded_score[i] < 0) {
442  score += s->coded_score[i];
443  cbp |= 1 << (5 - i);
444  }
445  }
446 
447  if (cbp) {
448  int zero_score = -6;
449  if ((motion_x | motion_y | s->dquant | mb_type) == 0)
450  zero_score -= 4; // 2 * MV + mb_type + cbp bit
451 
452  zero_score *= lambda;
453  if (zero_score <= score)
454  cbp = 0;
455  }
456 
457  for (i = 0; i < 6; i++) {
458  if (s->block_last_index[i] >= 0 && ((cbp >> (5 - i)) & 1) == 0) {
459  s->block_last_index[i] = -1;
460  s->bdsp.clear_block(s->block[i]);
461  }
462  }
463  } else {
464  for (i = 0; i < 6; i++) {
465  if (s->block_last_index[i] >= 0)
466  cbp |= 1 << (5 - i);
467  }
468  }
469  return cbp;
470 }
471 
472 // FIXME this is duplicated to h263.c
473 static const int dquant_code[5] = { 1, 0, 9, 2, 3 };
474 
475 void ff_mpeg4_encode_mb(MpegEncContext *s, int16_t block[6][64],
476  int motion_x, int motion_y)
477 {
478  int cbpc, cbpy, pred_x, pred_y;
479  PutBitContext *const pb2 = s->data_partitioning ? &s->pb2 : &s->pb;
480  PutBitContext *const tex_pb = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_B ? &s->tex_pb : &s->pb;
481  PutBitContext *const dc_pb = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_I ? &s->pb2 : &s->pb;
482  const int interleaved_stats = (s->avctx->flags & AV_CODEC_FLAG_PASS1) && !s->data_partitioning ? 1 : 0;
483 
484  if (!s->mb_intra) {
485  int i, cbp;
486 
487  if (s->pict_type == AV_PICTURE_TYPE_B) {
488  /* convert from mv_dir to type */
489  static const int mb_type_table[8] = { -1, 3, 2, 1, -1, -1, -1, 0 };
490  int mb_type = mb_type_table[s->mv_dir];
491 
492  if (s->mb_x == 0) {
493  for (i = 0; i < 2; i++)
494  s->last_mv[i][0][0] =
495  s->last_mv[i][0][1] =
496  s->last_mv[i][1][0] =
497  s->last_mv[i][1][1] = 0;
498  }
499 
500  assert(s->dquant >= -2 && s->dquant <= 2);
501  assert((s->dquant & 1) == 0);
502  assert(mb_type >= 0);
503 
504  /* nothing to do if this MB was skipped in the next P-frame */
505  if (s->next_picture.mbskip_table[s->mb_y * s->mb_stride + s->mb_x]) { // FIXME avoid DCT & ...
506  s->skip_count++;
507  s->mv[0][0][0] =
508  s->mv[0][0][1] =
509  s->mv[1][0][0] =
510  s->mv[1][0][1] = 0;
511  s->mv_dir = MV_DIR_FORWARD; // doesn't matter
512  s->qscale -= s->dquant;
513 // s->mb_skipped = 1;
514 
515  return;
516  }
517 
518  cbp = get_b_cbp(s, block, motion_x, motion_y, mb_type);
519 
520  if ((cbp | motion_x | motion_y | mb_type) == 0) {
521  /* direct MB with MV={0,0} */
522  assert(s->dquant == 0);
523 
524  put_bits(&s->pb, 1, 1); /* mb not coded modb1=1 */
525 
526  if (interleaved_stats) {
527  s->misc_bits++;
528  s->last_bits++;
529  }
530  s->skip_count++;
531  return;
532  }
533 
534  put_bits(&s->pb, 1, 0); /* mb coded modb1=0 */
535  put_bits(&s->pb, 1, cbp ? 0 : 1); /* modb2 */ // FIXME merge
536  put_bits(&s->pb, mb_type + 1, 1); // this table is so simple that we don't need it :)
537  if (cbp)
538  put_bits(&s->pb, 6, cbp);
539 
540  if (cbp && mb_type) {
541  if (s->dquant)
542  put_bits(&s->pb, 2, (s->dquant >> 2) + 3);
543  else
544  put_bits(&s->pb, 1, 0);
545  } else
546  s->qscale -= s->dquant;
547 
548  if (!s->progressive_sequence) {
549  if (cbp)
550  put_bits(&s->pb, 1, s->interlaced_dct);
551  if (mb_type) // not direct mode
552  put_bits(&s->pb, 1, s->mv_type == MV_TYPE_FIELD);
553  }
554 
555  if (interleaved_stats)
556  s->misc_bits += get_bits_diff(s);
557 
558  if (!mb_type) {
559  assert(s->mv_dir & MV_DIRECT);
560  ff_h263_encode_motion_vector(s, motion_x, motion_y, 1);
561  s->b_count++;
562  s->f_count++;
563  } else {
564  assert(mb_type > 0 && mb_type < 4);
565  if (s->mv_type != MV_TYPE_FIELD) {
566  if (s->mv_dir & MV_DIR_FORWARD) {
568  s->mv[0][0][0] - s->last_mv[0][0][0],
569  s->mv[0][0][1] - s->last_mv[0][0][1],
570  s->f_code);
571  s->last_mv[0][0][0] =
572  s->last_mv[0][1][0] = s->mv[0][0][0];
573  s->last_mv[0][0][1] =
574  s->last_mv[0][1][1] = s->mv[0][0][1];
575  s->f_count++;
576  }
577  if (s->mv_dir & MV_DIR_BACKWARD) {
579  s->mv[1][0][0] - s->last_mv[1][0][0],
580  s->mv[1][0][1] - s->last_mv[1][0][1],
581  s->b_code);
582  s->last_mv[1][0][0] =
583  s->last_mv[1][1][0] = s->mv[1][0][0];
584  s->last_mv[1][0][1] =
585  s->last_mv[1][1][1] = s->mv[1][0][1];
586  s->b_count++;
587  }
588  } else {
589  if (s->mv_dir & MV_DIR_FORWARD) {
590  put_bits(&s->pb, 1, s->field_select[0][0]);
591  put_bits(&s->pb, 1, s->field_select[0][1]);
592  }
593  if (s->mv_dir & MV_DIR_BACKWARD) {
594  put_bits(&s->pb, 1, s->field_select[1][0]);
595  put_bits(&s->pb, 1, s->field_select[1][1]);
596  }
597  if (s->mv_dir & MV_DIR_FORWARD) {
598  for (i = 0; i < 2; i++) {
600  s->mv[0][i][0] - s->last_mv[0][i][0],
601  s->mv[0][i][1] - s->last_mv[0][i][1] / 2,
602  s->f_code);
603  s->last_mv[0][i][0] = s->mv[0][i][0];
604  s->last_mv[0][i][1] = s->mv[0][i][1] * 2;
605  }
606  s->f_count++;
607  }
608  if (s->mv_dir & MV_DIR_BACKWARD) {
609  for (i = 0; i < 2; i++) {
611  s->mv[1][i][0] - s->last_mv[1][i][0],
612  s->mv[1][i][1] - s->last_mv[1][i][1] / 2,
613  s->b_code);
614  s->last_mv[1][i][0] = s->mv[1][i][0];
615  s->last_mv[1][i][1] = s->mv[1][i][1] * 2;
616  }
617  s->b_count++;
618  }
619  }
620  }
621 
622  if (interleaved_stats)
623  s->mv_bits += get_bits_diff(s);
624 
625  mpeg4_encode_blocks(s, block, NULL, NULL, NULL, &s->pb);
626 
627  if (interleaved_stats)
628  s->p_tex_bits += get_bits_diff(s);
629  } else { /* s->pict_type==AV_PICTURE_TYPE_B */
630  cbp = get_p_cbp(s, block, motion_x, motion_y);
631 
632  if ((cbp | motion_x | motion_y | s->dquant) == 0 &&
633  s->mv_type == MV_TYPE_16X16) {
634  /* Check if the B-frames can skip it too, as we must skip it
635  * if we skip here why didn't they just compress
636  * the skip-mb bits instead of reusing them ?! */
637  if (s->max_b_frames > 0) {
638  int i;
639  int x, y, offset;
640  uint8_t *p_pic;
641 
642  x = s->mb_x * 16;
643  y = s->mb_y * 16;
644  if (x + 16 > s->width)
645  x = s->width - 16;
646  if (y + 16 > s->height)
647  y = s->height - 16;
648 
649  offset = x + y * s->linesize;
650  p_pic = s->new_picture.f->data[0] + offset;
651 
652  s->mb_skipped = 1;
653  for (i = 0; i < s->max_b_frames; i++) {
654  uint8_t *b_pic;
655  int diff;
656  Picture *pic = s->reordered_input_picture[i + 1];
657 
658  if (!pic || pic->f->pict_type != AV_PICTURE_TYPE_B)
659  break;
660 
661  b_pic = pic->f->data[0] + offset;
662  if (!pic->shared)
663  b_pic += INPLACE_OFFSET;
664  diff = s->mecc.sad[0](NULL, p_pic, b_pic, s->linesize, 16);
665  if (diff > s->qscale * 70) { // FIXME check that 70 is optimal
666  s->mb_skipped = 0;
667  break;
668  }
669  }
670  } else
671  s->mb_skipped = 1;
672 
673  if (s->mb_skipped == 1) {
674  /* skip macroblock */
675  put_bits(&s->pb, 1, 1);
676 
677  if (interleaved_stats) {
678  s->misc_bits++;
679  s->last_bits++;
680  }
681  s->skip_count++;
682 
683  return;
684  }
685  }
686 
687  put_bits(&s->pb, 1, 0); /* mb coded */
688  cbpc = cbp & 3;
689  cbpy = cbp >> 2;
690  cbpy ^= 0xf;
691  if (s->mv_type == MV_TYPE_16X16) {
692  if (s->dquant)
693  cbpc += 8;
694  put_bits(&s->pb,
697 
698  put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]);
699  if (s->dquant)
700  put_bits(pb2, 2, dquant_code[s->dquant + 2]);
701 
702  if (!s->progressive_sequence) {
703  if (cbp)
704  put_bits(pb2, 1, s->interlaced_dct);
705  put_bits(pb2, 1, 0);
706  }
707 
708  if (interleaved_stats)
709  s->misc_bits += get_bits_diff(s);
710 
711  /* motion vectors: 16x16 mode */
712  ff_h263_pred_motion(s, 0, 0, &pred_x, &pred_y);
713 
715  motion_x - pred_x,
716  motion_y - pred_y,
717  s->f_code);
718  } else if (s->mv_type == MV_TYPE_FIELD) {
719  if (s->dquant)
720  cbpc += 8;
721  put_bits(&s->pb,
724 
725  put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]);
726  if (s->dquant)
727  put_bits(pb2, 2, dquant_code[s->dquant + 2]);
728 
729  assert(!s->progressive_sequence);
730  if (cbp)
731  put_bits(pb2, 1, s->interlaced_dct);
732  put_bits(pb2, 1, 1);
733 
734  if (interleaved_stats)
735  s->misc_bits += get_bits_diff(s);
736 
737  /* motion vectors: 16x8 interlaced mode */
738  ff_h263_pred_motion(s, 0, 0, &pred_x, &pred_y);
739  pred_y /= 2;
740 
741  put_bits(&s->pb, 1, s->field_select[0][0]);
742  put_bits(&s->pb, 1, s->field_select[0][1]);
743 
745  s->mv[0][0][0] - pred_x,
746  s->mv[0][0][1] - pred_y,
747  s->f_code);
749  s->mv[0][1][0] - pred_x,
750  s->mv[0][1][1] - pred_y,
751  s->f_code);
752  } else {
753  assert(s->mv_type == MV_TYPE_8X8);
754  put_bits(&s->pb,
755  ff_h263_inter_MCBPC_bits[cbpc + 16],
756  ff_h263_inter_MCBPC_code[cbpc + 16]);
757  put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]);
758 
759  if (!s->progressive_sequence && cbp)
760  put_bits(pb2, 1, s->interlaced_dct);
761 
762  if (interleaved_stats)
763  s->misc_bits += get_bits_diff(s);
764 
765  for (i = 0; i < 4; i++) {
766  /* motion vectors: 8x8 mode*/
767  ff_h263_pred_motion(s, i, 0, &pred_x, &pred_y);
768 
770  s->current_picture.motion_val[0][s->block_index[i]][0] - pred_x,
771  s->current_picture.motion_val[0][s->block_index[i]][1] - pred_y,
772  s->f_code);
773  }
774  }
775 
776  if (interleaved_stats)
777  s->mv_bits += get_bits_diff(s);
778 
779  mpeg4_encode_blocks(s, block, NULL, NULL, NULL, tex_pb);
780 
781  if (interleaved_stats)
782  s->p_tex_bits += get_bits_diff(s);
783 
784  s->f_count++;
785  }
786  } else {
787  int cbp;
788  int dc_diff[6]; // dc values with the dc prediction subtracted
789  int dir[6]; // prediction direction
790  int zigzag_last_index[6];
791  uint8_t *scan_table[6];
792  int i;
793 
794  for (i = 0; i < 6; i++)
795  dc_diff[i] = ff_mpeg4_pred_dc(s, i, block[i][0], &dir[i], 1);
796 
797  if (s->avctx->flags & AV_CODEC_FLAG_AC_PRED) {
798  s->ac_pred = decide_ac_pred(s, block, dir, scan_table, zigzag_last_index);
799  } else {
800  for (i = 0; i < 6; i++)
801  scan_table[i] = s->intra_scantable.permutated;
802  }
803 
804  /* compute cbp */
805  cbp = 0;
806  for (i = 0; i < 6; i++)
807  if (s->block_last_index[i] >= 1)
808  cbp |= 1 << (5 - i);
809 
810  cbpc = cbp & 3;
811  if (s->pict_type == AV_PICTURE_TYPE_I) {
812  if (s->dquant)
813  cbpc += 4;
814  put_bits(&s->pb,
817  } else {
818  if (s->dquant)
819  cbpc += 8;
820  put_bits(&s->pb, 1, 0); /* mb coded */
821  put_bits(&s->pb,
822  ff_h263_inter_MCBPC_bits[cbpc + 4],
823  ff_h263_inter_MCBPC_code[cbpc + 4]);
824  }
825  put_bits(pb2, 1, s->ac_pred);
826  cbpy = cbp >> 2;
827  put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]);
828  if (s->dquant)
829  put_bits(dc_pb, 2, dquant_code[s->dquant + 2]);
830 
831  if (!s->progressive_sequence)
832  put_bits(dc_pb, 1, s->interlaced_dct);
833 
834  if (interleaved_stats)
835  s->misc_bits += get_bits_diff(s);
836 
837  mpeg4_encode_blocks(s, block, dc_diff, scan_table, dc_pb, tex_pb);
838 
839  if (interleaved_stats)
840  s->i_tex_bits += get_bits_diff(s);
841  s->i_count++;
842 
843  /* restore ac coeffs & last_index stuff
844  * if we messed them up with the prediction */
845  if (s->ac_pred)
846  restore_ac_coeffs(s, block, dir, scan_table, zigzag_last_index);
847  }
848 }
849 
854 {
855  int length;
856  put_bits(pbc, 1, 0);
857  length = (-put_bits_count(pbc)) & 7;
858  if (length)
859  put_bits(pbc, length, (1 << length) - 1);
860 }
861 
862 /* must be called before writing the header */
864 {
865  if (s->pict_type == AV_PICTURE_TYPE_B) {
867  } else {
868  s->last_time_base = s->time_base;
869  s->time_base = s->time / s->avctx->time_base.den;
870  }
871 }
872 
874 {
875  int hours, minutes, seconds;
876  int64_t time;
877 
878  put_bits(&s->pb, 16, 0);
879  put_bits(&s->pb, 16, GOP_STARTCODE);
880 
881  time = s->current_picture_ptr->f->pts;
882  if (s->reordered_input_picture[1])
883  time = FFMIN(time, s->reordered_input_picture[1]->f->pts);
884  time = time * s->avctx->time_base.num;
885 
886  seconds = time / s->avctx->time_base.den;
887  minutes = seconds / 60;
888  seconds %= 60;
889  hours = minutes / 60;
890  minutes %= 60;
891  hours %= 24;
892 
893  put_bits(&s->pb, 5, hours);
894  put_bits(&s->pb, 6, minutes);
895  put_bits(&s->pb, 1, 1);
896  put_bits(&s->pb, 6, seconds);
897 
898  put_bits(&s->pb, 1, !!(s->avctx->flags & AV_CODEC_FLAG_CLOSED_GOP));
899  put_bits(&s->pb, 1, 0); // broken link == NO
900 
901  s->last_time_base = time / s->avctx->time_base.den;
902 
903  ff_mpeg4_stuffing(&s->pb);
904 }
905 
907 {
908  int profile_and_level_indication;
909  int vo_ver_id;
910 
911  if (s->avctx->profile != FF_PROFILE_UNKNOWN) {
912  profile_and_level_indication = s->avctx->profile << 4;
913  } else if (s->max_b_frames || s->quarter_sample) {
914  profile_and_level_indication = 0xF0; // adv simple
915  } else {
916  profile_and_level_indication = 0x00; // simple
917  }
918 
919  if (s->avctx->level != FF_LEVEL_UNKNOWN)
920  profile_and_level_indication |= s->avctx->level;
921  else
922  profile_and_level_indication |= 1; // level 1
923 
924  if (profile_and_level_indication >> 4 == 0xF)
925  vo_ver_id = 5;
926  else
927  vo_ver_id = 1;
928 
929  // FIXME levels
930 
931  put_bits(&s->pb, 16, 0);
932  put_bits(&s->pb, 16, VOS_STARTCODE);
933 
934  put_bits(&s->pb, 8, profile_and_level_indication);
935 
936  put_bits(&s->pb, 16, 0);
937  put_bits(&s->pb, 16, VISUAL_OBJ_STARTCODE);
938 
939  put_bits(&s->pb, 1, 1);
940  put_bits(&s->pb, 4, vo_ver_id);
941  put_bits(&s->pb, 3, 1); // priority
942 
943  put_bits(&s->pb, 4, 1); // visual obj type== video obj
944 
945  put_bits(&s->pb, 1, 0); // video signal type == no clue // FIXME
946 
947  ff_mpeg4_stuffing(&s->pb);
948 }
949 
951  int vo_number,
952  int vol_number)
953 {
954  int vo_ver_id;
955 
957  return;
958 
959  if (s->max_b_frames || s->quarter_sample) {
960  vo_ver_id = 5;
962  } else {
963  vo_ver_id = 1;
964  s->vo_type = SIMPLE_VO_TYPE;
965  }
966 
967  put_bits(&s->pb, 16, 0);
968  put_bits(&s->pb, 16, 0x100 + vo_number); /* video obj */
969  put_bits(&s->pb, 16, 0);
970  put_bits(&s->pb, 16, 0x120 + vol_number); /* video obj layer */
971 
972  put_bits(&s->pb, 1, 0); /* random access vol */
973  put_bits(&s->pb, 8, s->vo_type); /* video obj type indication */
974  if (s->workaround_bugs & FF_BUG_MS) {
975  put_bits(&s->pb, 1, 0); /* is obj layer id= no */
976  } else {
977  put_bits(&s->pb, 1, 1); /* is obj layer id= yes */
978  put_bits(&s->pb, 4, vo_ver_id); /* is obj layer ver id */
979  put_bits(&s->pb, 3, 1); /* is obj layer priority */
980  }
981 
983 
984  put_bits(&s->pb, 4, s->aspect_ratio_info); /* aspect ratio info */
986  put_bits(&s->pb, 8, s->avctx->sample_aspect_ratio.num);
987  put_bits(&s->pb, 8, s->avctx->sample_aspect_ratio.den);
988  }
989 
990  if (s->workaround_bugs & FF_BUG_MS) {
991  put_bits(&s->pb, 1, 0); /* vol control parameters= no @@@ */
992  } else {
993  put_bits(&s->pb, 1, 1); /* vol control parameters= yes */
994  put_bits(&s->pb, 2, 1); /* chroma format YUV 420/YV12 */
995  put_bits(&s->pb, 1, s->low_delay);
996  put_bits(&s->pb, 1, 0); /* vbv parameters= no */
997  }
998 
999  put_bits(&s->pb, 2, RECT_SHAPE); /* vol shape= rectangle */
1000  put_bits(&s->pb, 1, 1); /* marker bit */
1001 
1002  put_bits(&s->pb, 16, s->avctx->time_base.den);
1003  if (s->time_increment_bits < 1)
1004  s->time_increment_bits = 1;
1005  put_bits(&s->pb, 1, 1); /* marker bit */
1006  put_bits(&s->pb, 1, 0); /* fixed vop rate=no */
1007  put_bits(&s->pb, 1, 1); /* marker bit */
1008  put_bits(&s->pb, 13, s->width); /* vol width */
1009  put_bits(&s->pb, 1, 1); /* marker bit */
1010  put_bits(&s->pb, 13, s->height); /* vol height */
1011  put_bits(&s->pb, 1, 1); /* marker bit */
1012  put_bits(&s->pb, 1, s->progressive_sequence ? 0 : 1);
1013  put_bits(&s->pb, 1, 1); /* obmc disable */
1014  if (vo_ver_id == 1)
1015  put_bits(&s->pb, 1, 0); /* sprite enable */
1016  else
1017  put_bits(&s->pb, 2, 0); /* sprite enable */
1018 
1019  put_bits(&s->pb, 1, 0); /* not 8 bit == false */
1020  put_bits(&s->pb, 1, s->mpeg_quant); /* quant type = (0 = H.263 style) */
1021 
1022  if (s->mpeg_quant) {
1025  }
1026 
1027  if (vo_ver_id != 1)
1028  put_bits(&s->pb, 1, s->quarter_sample);
1029  put_bits(&s->pb, 1, 1); /* complexity estimation disable */
1030  put_bits(&s->pb, 1, s->rtp_mode ? 0 : 1); /* resync marker disable */
1031  put_bits(&s->pb, 1, s->data_partitioning ? 1 : 0);
1032  if (s->data_partitioning)
1033  put_bits(&s->pb, 1, 0); /* no rvlc */
1034 
1035  if (vo_ver_id != 1) {
1036  put_bits(&s->pb, 1, 0); /* newpred */
1037  put_bits(&s->pb, 1, 0); /* reduced res vop */
1038  }
1039  put_bits(&s->pb, 1, 0); /* scalability */
1040 
1041  ff_mpeg4_stuffing(&s->pb);
1042 
1043  /* user data */
1044  if (!(s->avctx->flags & AV_CODEC_FLAG_BITEXACT)) {
1045  put_bits(&s->pb, 16, 0);
1046  put_bits(&s->pb, 16, 0x1B2); /* user_data */
1048  }
1049 }
1050 
1051 /* write MPEG-4 VOP header */
1053 {
1054  int time_incr;
1055  int time_div, time_mod;
1056 
1057  if (s->pict_type == AV_PICTURE_TYPE_I) {
1058  if (!(s->avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER)) {
1059  if (s->strict_std_compliance < FF_COMPLIANCE_VERY_STRICT) // HACK, the reference sw is buggy
1061  if (s->strict_std_compliance < FF_COMPLIANCE_VERY_STRICT || picture_number == 0) // HACK, the reference sw is buggy
1062  mpeg4_encode_vol_header(s, 0, 0);
1063  }
1064  if (!(s->workaround_bugs & FF_BUG_MS))
1066  }
1067 
1069 
1070  put_bits(&s->pb, 16, 0); /* vop header */
1071  put_bits(&s->pb, 16, VOP_STARTCODE); /* vop header */
1072  put_bits(&s->pb, 2, s->pict_type - 1); /* pict type: I = 0 , P = 1 */
1073 
1074  assert(s->time >= 0);
1075  time_div = s->time / s->avctx->time_base.den;
1076  time_mod = s->time % s->avctx->time_base.den;
1077  time_incr = time_div - s->last_time_base;
1078  assert(time_incr >= 0);
1079  while (time_incr--)
1080  put_bits(&s->pb, 1, 1);
1081 
1082  put_bits(&s->pb, 1, 0);
1083 
1084  put_bits(&s->pb, 1, 1); /* marker */
1085  put_bits(&s->pb, s->time_increment_bits, time_mod); /* time increment */
1086  put_bits(&s->pb, 1, 1); /* marker */
1087  put_bits(&s->pb, 1, 1); /* vop coded */
1088  if (s->pict_type == AV_PICTURE_TYPE_P) {
1089  put_bits(&s->pb, 1, s->no_rounding); /* rounding type */
1090  }
1091  put_bits(&s->pb, 3, 0); /* intra dc VLC threshold */
1092  if (!s->progressive_sequence) {
1094  put_bits(&s->pb, 1, s->alternate_scan);
1095  }
1096  // FIXME sprite stuff
1097 
1098  put_bits(&s->pb, 5, s->qscale);
1099 
1100  if (s->pict_type != AV_PICTURE_TYPE_I)
1101  put_bits(&s->pb, 3, s->f_code); /* fcode_for */
1102  if (s->pict_type == AV_PICTURE_TYPE_B)
1103  put_bits(&s->pb, 3, s->b_code); /* fcode_back */
1104 }
1105 
1106 static av_cold void init_uni_dc_tab(void)
1107 {
1108  int level, uni_code, uni_len;
1109 
1110  for (level = -256; level < 256; level++) {
1111  int size, v, l;
1112  /* find number of bits */
1113  size = 0;
1114  v = abs(level);
1115  while (v) {
1116  v >>= 1;
1117  size++;
1118  }
1119 
1120  if (level < 0)
1121  l = (-level) ^ ((1 << size) - 1);
1122  else
1123  l = level;
1124 
1125  /* luminance */
1126  uni_code = ff_mpeg4_DCtab_lum[size][0];
1127  uni_len = ff_mpeg4_DCtab_lum[size][1];
1128 
1129  if (size > 0) {
1130  uni_code <<= size;
1131  uni_code |= l;
1132  uni_len += size;
1133  if (size > 8) {
1134  uni_code <<= 1;
1135  uni_code |= 1;
1136  uni_len++;
1137  }
1138  }
1139  uni_DCtab_lum_bits[level + 256] = uni_code;
1140  uni_DCtab_lum_len[level + 256] = uni_len;
1141 
1142  /* chrominance */
1143  uni_code = ff_mpeg4_DCtab_chrom[size][0];
1144  uni_len = ff_mpeg4_DCtab_chrom[size][1];
1145 
1146  if (size > 0) {
1147  uni_code <<= size;
1148  uni_code |= l;
1149  uni_len += size;
1150  if (size > 8) {
1151  uni_code <<= 1;
1152  uni_code |= 1;
1153  uni_len++;
1154  }
1155  }
1156  uni_DCtab_chrom_bits[level + 256] = uni_code;
1157  uni_DCtab_chrom_len[level + 256] = uni_len;
1158  }
1159 }
1160 
1161 static av_cold void init_uni_mpeg4_rl_tab(RLTable *rl, uint32_t *bits_tab,
1162  uint8_t *len_tab)
1163 {
1164  int slevel, run, last;
1165 
1166  assert(MAX_LEVEL >= 64);
1167  assert(MAX_RUN >= 63);
1168 
1169  for (slevel = -64; slevel < 64; slevel++) {
1170  if (slevel == 0)
1171  continue;
1172  for (run = 0; run < 64; run++) {
1173  for (last = 0; last <= 1; last++) {
1174  const int index = UNI_MPEG4_ENC_INDEX(last, run, slevel + 64);
1175  int level = slevel < 0 ? -slevel : slevel;
1176  int sign = slevel < 0 ? 1 : 0;
1177  int bits, len, code;
1178  int level1, run1;
1179 
1180  len_tab[index] = 100;
1181 
1182  /* ESC0 */
1183  code = get_rl_index(rl, last, run, level);
1184  bits = rl->table_vlc[code][0];
1185  len = rl->table_vlc[code][1];
1186  bits = bits * 2 + sign;
1187  len++;
1188 
1189  if (code != rl->n && len < len_tab[index]) {
1190  bits_tab[index] = bits;
1191  len_tab[index] = len;
1192  }
1193  /* ESC1 */
1194  bits = rl->table_vlc[rl->n][0];
1195  len = rl->table_vlc[rl->n][1];
1196  bits = bits * 2;
1197  len++; // esc1
1198  level1 = level - rl->max_level[last][run];
1199  if (level1 > 0) {
1200  code = get_rl_index(rl, last, run, level1);
1201  bits <<= rl->table_vlc[code][1];
1202  len += rl->table_vlc[code][1];
1203  bits += rl->table_vlc[code][0];
1204  bits = bits * 2 + sign;
1205  len++;
1206 
1207  if (code != rl->n && len < len_tab[index]) {
1208  bits_tab[index] = bits;
1209  len_tab[index] = len;
1210  }
1211  }
1212  /* ESC2 */
1213  bits = rl->table_vlc[rl->n][0];
1214  len = rl->table_vlc[rl->n][1];
1215  bits = bits * 4 + 2;
1216  len += 2; // esc2
1217  run1 = run - rl->max_run[last][level] - 1;
1218  if (run1 >= 0) {
1219  code = get_rl_index(rl, last, run1, level);
1220  bits <<= rl->table_vlc[code][1];
1221  len += rl->table_vlc[code][1];
1222  bits += rl->table_vlc[code][0];
1223  bits = bits * 2 + sign;
1224  len++;
1225 
1226  if (code != rl->n && len < len_tab[index]) {
1227  bits_tab[index] = bits;
1228  len_tab[index] = len;
1229  }
1230  }
1231  /* ESC3 */
1232  bits = rl->table_vlc[rl->n][0];
1233  len = rl->table_vlc[rl->n][1];
1234  bits = bits * 4 + 3;
1235  len += 2; // esc3
1236  bits = bits * 2 + last;
1237  len++;
1238  bits = bits * 64 + run;
1239  len += 6;
1240  bits = bits * 2 + 1;
1241  len++; // marker
1242  bits = bits * 4096 + (slevel & 0xfff);
1243  len += 12;
1244  bits = bits * 2 + 1;
1245  len++; // marker
1246 
1247  if (len < len_tab[index]) {
1248  bits_tab[index] = bits;
1249  len_tab[index] = len;
1250  }
1251  }
1252  }
1253  }
1254 }
1255 
1257 {
1258  MpegEncContext *s = avctx->priv_data;
1259  int ret;
1260  static int done = 0;
1261 
1262  if ((ret = ff_mpv_encode_init(avctx)) < 0)
1263  return ret;
1264 
1265  if (!done) {
1266  done = 1;
1267 
1268  init_uni_dc_tab();
1269 
1271 
1274  }
1275 
1276  s->min_qcoeff = -2048;
1277  s->max_qcoeff = 2047;
1283  s->ac_esc_length = 7 + 2 + 1 + 6 + 1 + 12 + 1;
1286 
1288  s->avctx->extradata = av_malloc(1024);
1289  init_put_bits(&s->pb, s->avctx->extradata, 1024);
1290 
1291  if (!(s->workaround_bugs & FF_BUG_MS))
1293  mpeg4_encode_vol_header(s, 0, 0);
1294 
1295 // ff_mpeg4_stuffing(&s->pb); ?
1296  flush_put_bits(&s->pb);
1297  s->avctx->extradata_size = (put_bits_count(&s->pb) + 7) >> 3;
1298  }
1299  return 0;
1300 }
1301 
1303 {
1304  uint8_t *start = put_bits_ptr(&s->pb);
1305  uint8_t *end = s->pb.buf_end;
1306  int size = end - start;
1307  int pb_size = (((intptr_t)start + size / 3) & (~3)) - (intptr_t)start;
1308  int tex_size = (size - 2 * pb_size) & (~3);
1309 
1310  set_put_bits_buffer_size(&s->pb, pb_size);
1311  init_put_bits(&s->tex_pb, start + pb_size, tex_size);
1312  init_put_bits(&s->pb2, start + pb_size + tex_size, pb_size);
1313 }
1314 
1316 {
1317  const int pb2_len = put_bits_count(&s->pb2);
1318  const int tex_pb_len = put_bits_count(&s->tex_pb);
1319  const int bits = put_bits_count(&s->pb);
1320 
1321  if (s->pict_type == AV_PICTURE_TYPE_I) {
1322  put_bits(&s->pb, 19, DC_MARKER);
1323  s->misc_bits += 19 + pb2_len + bits - s->last_bits;
1324  s->i_tex_bits += tex_pb_len;
1325  } else {
1326  put_bits(&s->pb, 17, MOTION_MARKER);
1327  s->misc_bits += 17 + pb2_len;
1328  s->mv_bits += bits - s->last_bits;
1329  s->p_tex_bits += tex_pb_len;
1330  }
1331 
1332  flush_put_bits(&s->pb2);
1333  flush_put_bits(&s->tex_pb);
1334 
1335  set_put_bits_buffer_size(&s->pb, s->pb2.buf_end - s->pb.buf);
1336  avpriv_copy_bits(&s->pb, s->pb2.buf, pb2_len);
1337  avpriv_copy_bits(&s->pb, s->tex_pb.buf, tex_pb_len);
1338  s->last_bits = put_bits_count(&s->pb);
1339 }
1340 
1342 {
1343  int mb_num_bits = av_log2(s->mb_num - 1) + 1;
1344 
1346  put_bits(&s->pb, 1, 1);
1347 
1348  put_bits(&s->pb, mb_num_bits, s->mb_x + s->mb_y * s->mb_width);
1349  put_bits(&s->pb, s->quant_precision, s->qscale);
1350  put_bits(&s->pb, 1, 0); /* no HEC */
1351 }
1352 
1353 #define OFFSET(x) offsetof(MpegEncContext, x)
1354 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1355 static const AVOption options[] = {
1356  { "data_partitioning", "Use data partitioning.", OFFSET(data_partitioning), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1357  { "alternate_scan", "Enable alternate scantable.", OFFSET(alternate_scan), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1359  { NULL },
1360 };
1361 
1362 static const AVClass mpeg4enc_class = {
1363  .class_name = "MPEG4 encoder",
1364  .item_name = av_default_item_name,
1365  .option = options,
1366  .version = LIBAVUTIL_VERSION_INT,
1367 };
1368 
1370  .name = "mpeg4",
1371  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 part 2"),
1372  .type = AVMEDIA_TYPE_VIDEO,
1373  .id = AV_CODEC_ID_MPEG4,
1374  .priv_data_size = sizeof(MpegEncContext),
1375  .init = encode_init,
1376  .encode2 = ff_mpv_encode_picture,
1377  .close = ff_mpv_encode_end,
1380  .priv_class = &mpeg4enc_class,
1381 };
int last_time_base
Definition: mpegvideo.h:373
static void mpeg4_encode_visual_object_header(MpegEncContext *s)
#define INPLACE_OFFSET
Definition: mpegutils.h:123
IDCTDSPContext idsp
Definition: mpegvideo.h:221
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:62
int aspect_ratio_info
Definition: mpegvideo.h:387
ScanTable intra_v_scantable
Definition: mpegvideo.h:88
RLTable ff_mpeg4_rl_intra
Definition: mpeg4data.h:109
int size
const uint8_t ff_mpeg4_c_dc_scale_table[32]
Definition: mpeg4data.h:363
int time_increment_bits
< number of bits to represent the fractional part of time (encoder only)
Definition: mpegvideo.h:372
AVOption.
Definition: opt.h:234
#define MV_TYPE_FIELD
2 vectors, one per field
Definition: mpegvideo.h:263
static uint8_t uni_mpeg4_intra_rl_len[64 *64 *2 *2]
Definition: mpeg4videoenc.c:42
const uint8_t * y_dc_scale_table
qscale -> y_dc_scale table
Definition: mpegvideo.h:183
static void mpeg4_encode_block(MpegEncContext *s, int16_t *block, int n, int intra_dc, uint8_t *scan_table, PutBitContext *dc_pb, PutBitContext *ac_pb)
Encode an 8x8 block.
int last_mv[2][2][2]
last MV, used for MV prediction in MPEG-1 & B-frame MPEG-4
Definition: mpegvideo.h:272
void ff_clean_mpeg4_qscales(MpegEncContext *s)
modify mb_type & qscale so that encoding is actually possible in MPEG-4
int16_t(*[3] ac_val)[16]
used for for MPEG-4 AC prediction, all 3 arrays must be continuous
Definition: mpegvideo.h:189
void(* clear_block)(int16_t *block)
Definition: blockdsp.h:35
static int get_block_rate(MpegEncContext *s, int16_t block[64], int block_last_index, uint8_t scantable[64])
Return the number of bits that encoding the 8x8 block in block would need.
Definition: mpeg4videoenc.c:64
#define FF_COMPLIANCE_VERY_STRICT
Strictly conform to an older more strict version of the spec or reference software.
Definition: avcodec.h:2606
#define FF_MPV_COMMON_OPTS
Definition: mpegvideo.h:573
int num
numerator
Definition: rational.h:44
#define CANDIDATE_MB_TYPE_BIDIR
Definition: mpegutils.h:114
static void skip_put_bits(PutBitContext *s, int n)
Skip the given number of bits.
Definition: put_bits.h:220
void avpriv_copy_bits(PutBitContext *pb, const uint8_t *src, int length)
Copy the content of src to the bitstream.
Definition: bitstream.c:62
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:1804
int min_qcoeff
minimum encodable coefficient
Definition: mpegvideo.h:301
mpegvideo header.
#define FF_ASPECT_EXTENDED
Definition: avcodec.h:1598
static uint32_t uni_mpeg4_intra_rl_bits[64 *64 *2 *2]
Definition: mpeg4videoenc.c:41
#define DC_MARKER
Definition: mpeg4video.h:54
int mpv_flags
flags set by private options
Definition: mpegvideo.h:504
uint8_t permutated[64]
Definition: idctdsp.h:31
uint8_t run
Definition: svq3.c:203
uint8_t * intra_ac_vlc_length
Definition: mpegvideo.h:304
#define UNI_AC_ENC_INDEX(run, level)
Definition: mpegvideo.h:309
int mb_num
number of MBs of a picture
Definition: mpegvideo.h:128
int profile
profile
Definition: avcodec.h:2880
#define FF_LAMBDA_SHIFT
Definition: avutil.h:212
AVCodec.
Definition: avcodec.h:3120
int time_base
time in seconds of last I,P,S Frame
Definition: mpegvideo.h:374
RLTable.
Definition: rl.h:39
int qscale
QP.
Definition: mpegvideo.h:199
int16_t * ff_h263_pred_motion(MpegEncContext *s, int block, int dir, int *px, int *py)
Definition: h263.c:309
static av_cold void init_uni_dc_tab(void)
void ff_mpeg4_encode_picture_header(MpegEncContext *s, int picture_number)
int field_select[2][2]
Definition: mpegvideo.h:271
int block_wrap[6]
Definition: mpegvideo.h:288
Macro definitions for various function/variable attributes.
int quant_precision
Definition: mpegvideo.h:385
AVRational time_base
This is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented...
Definition: avcodec.h:1535
#define FF_BUG_MS
Work around various bugs in Microsoft&#39;s broken decoders.
Definition: avcodec.h:2590
#define FF_MPV_FLAG_CBP_RD
Definition: mpegvideo.h:551
static int16_t block[64]
Definition: dct.c:97
#define FF_LEVEL_UNKNOWN
Definition: avcodec.h:2971
void ff_mpeg4_stuffing(PutBitContext *pbc)
add MPEG-4 stuffing bits (01...1)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:39
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:863
static uint8_t uni_DCtab_chrom_len[512]
Definition: mpeg4videoenc.c:35
int8_t * max_run[2]
encoding & decoding
Definition: rl.h:47
int64_t time
time of current frame
Definition: mpegvideo.h:375
#define MV_DIRECT
bidirectional mode where the difference equals the MV of the last P/S/I-Frame (MPEG-4) ...
Definition: mpegvideo.h:258
uint8_t bits
Definition: crc.c:252
uint8_t
#define av_cold
Definition: attributes.h:66
AVOptions.
PutBitContext pb2
used for data partitioned VOPs
Definition: mpegvideo.h:394
#define VOP_STARTCODE
Definition: mpeg4video.h:60
static int decide_ac_pred(MpegEncContext *s, int16_t block[6][64], const int dir[6], uint8_t *st[6], int zigzag_last_index[6])
Return the optimal value (0 or 1) for the ac_pred element for the given MB in MPEG-4.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:211
int misc_bits
cbp, mb_type
Definition: mpegvideo.h:340
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1523
int no_rounding
apply no rounding to motion compensation (MPEG-4, msmpeg4, ...) for B-frames rounding mode is always ...
Definition: mpegvideo.h:278
int interlaced_dct
Definition: mpegvideo.h:464
Picture current_picture
copy of the current picture structure.
Definition: mpegvideo.h:175
const uint8_t ff_mpeg4_DCtab_chrom[13][2]
Definition: mpeg4data.h:41
#define RECT_SHAPE
Definition: mpeg4video.h:33
int8_t * max_level[2]
encoding & decoding
Definition: rl.h:46
const uint8_t ff_h263_intra_MCBPC_bits[9]
Definition: h263data.c:35
int max_qcoeff
maximum encodable coefficient
Definition: mpegvideo.h:302
static const int dquant_code[5]
#define MAX_LEVEL
Definition: rl.h:36
static uint32_t uni_mpeg4_inter_rl_bits[64 *64 *2 *2]
Definition: mpeg4videoenc.c:43
static int ff_mpeg4_pred_dc(MpegEncContext *s, int n, int level, int *dir_ptr, int encoding)
Predict the dc.
Definition: mpeg4video.h:173
int dquant
qscale difference to prev qscale
Definition: mpegvideo.h:205
#define MOTION_MARKER
Definition: mpeg4video.h:53
#define UNI_MPEG4_ENC_INDEX(last, run, level)
Definition: mpeg4videoenc.c:48
#define ROUNDED_DIV(a, b)
Definition: common.h:52
static void mpeg4_encode_gop_header(MpegEncContext *s)
static int get_bits_diff(MpegEncContext *s)
Definition: mpegvideo.h:694
void ff_mpeg4_init_partitions(MpegEncContext *s)
static uint8_t * put_bits_ptr(PutBitContext *s)
Return the pointer to the byte where the bitstream writer will put the next bit.
Definition: put_bits.h:199
uint8_t * mbskip_table
Definition: mpegpicture.h:59
const uint8_t ff_h263_inter_MCBPC_code[28]
Definition: h263data.c:40
static void restore_ac_coeffs(MpegEncContext *s, int16_t block[6][64], const int dir[6], uint8_t *st[6], const int zigzag_last_index[6])
Restore the ac coefficients in block that have been changed by decide_ac_pred().
Definition: mpeg4videoenc.c:99
uint8_t * inter_ac_vlc_last_length
Definition: mpegvideo.h:307
void ff_mpeg4_merge_partitions(MpegEncContext *s)
int mb_skipped
MUST BE SET only during DECODING.
Definition: mpegvideo.h:190
int strict_std_compliance
strictly follow the std (MPEG-4, ...)
Definition: mpegvideo.h:113
int partitioned_frame
is current frame partitioned
Definition: mpegvideo.h:390
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:148
void ff_mpeg4_encode_mb(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1503
#define SIMPLE_VO_TYPE
Definition: mpeg4video.h:38
uint8_t * buf
Definition: put_bits.h:38
void ff_mpeg4_init_direct_mv(MpegEncContext *s)
Definition: mpeg4video.c:71
const char * name
Name of the codec implementation.
Definition: avcodec.h:3127
int quarter_sample
1->qpel, 0->half pel ME/MC
Definition: mpegvideo.h:386
uint16_t * mb_type
Table for candidate MB types for encoding (defines in mpegutils.h)
Definition: mpegvideo.h:285
av_const int ff_h263_aspect_to_info(AVRational aspect)
Return the 4 bit value that specifies the given aspect ratio.
Definition: ituh263enc.c:89
static void put_bits(PutBitContext *s, int n, unsigned int value)
Write up to 31 bits into a bitstream.
Definition: put_bits.h:134
int low_delay
no reordering needed / has no B-frames
Definition: mpegvideo.h:391
static av_cold void init_uni_mpeg4_rl_tab(RLTable *rl, uint32_t *bits_tab, uint8_t *len_tab)
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:67
void ff_clean_h263_qscales(MpegEncContext *s)
modify qscale so that encoding is actually possible in H.263 (limit difference to -2...
Definition: ituh263enc.c:274
uint8_t * intra_ac_vlc_last_length
Definition: mpegvideo.h:305
#define ADV_SIMPLE_VO_TYPE
Definition: mpeg4video.h:44
const uint8_t ff_mpeg4_DCtab_lum[13][2]
Definition: mpeg4data.h:35
uint8_t ff_mpeg4_static_rl_table_store[3][2][2 *MAX_RUN+MAX_LEVEL+3]
Definition: mpeg4video.c:28
int n
number of entries of table_vlc minus 1
Definition: rl.h:40
const uint8_t ff_h263_inter_MCBPC_bits[28]
Definition: h263data.c:49
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:201
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:788
#define FFMIN(a, b)
Definition: common.h:66
const uint8_t ff_mpeg4_y_dc_scale_table[32]
Definition: mpeg4data.h:359
const uint16_t(* table_vlc)[2]
Definition: rl.h:42
#define AV_CODEC_FLAG_AC_PRED
H.263 advanced intra coding / MPEG-4 AC prediction.
Definition: avcodec.h:793
Picture new_picture
copy of the source picture structure for encoding.
Definition: mpegvideo.h:169
static uint8_t uni_mpeg4_inter_rl_len[64 *64 *2 *2]
Definition: mpeg4videoenc.c:44
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
Picture * current_picture_ptr
pointer to the current picture
Definition: mpegvideo.h:179
#define FF_PROFILE_UNKNOWN
Definition: avcodec.h:2881
Picture.
Definition: mpegpicture.h:45
static const AVClass mpeg4enc_class
int alternate_scan
Definition: mpegvideo.h:453
static uint16_t uni_DCtab_lum_bits[512]
Definition: mpeg4videoenc.c:36
int coded_score[8]
Definition: mpegvideo.h:311
static uint16_t uni_DCtab_chrom_bits[512]
Definition: mpeg4videoenc.c:37
static int get_b_cbp(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y, int mb_type)
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:751
static uint8_t uni_DCtab_lum_len[512]
Definition: mpeg4videoenc.c:34
int level
level
Definition: avcodec.h:2970
int block_last_index[12]
last non zero coefficient in block
Definition: mpegvideo.h:81
uint8_t idct_permutation[64]
IDCT input permutation.
Definition: idctdsp.h:94
int ac_esc_length
num of bits needed to encode the longest esc
Definition: mpegvideo.h:303
LIBAVUTIL_VERSION_INT
Definition: eval.c:55
static void set_put_bits_buffer_size(PutBitContext *s, int size)
Change the end of the buffer.
Definition: put_bits.h:232
void ff_write_quant_matrix(PutBitContext *pb, uint16_t *matrix)
int block_index[6]
index to current MB in block based arrays with edges
Definition: mpegvideo.h:287
if(ac->has_optimized_func)
int * mb_index2xy
mb_index -> mb_x + mb_y*mb_stride
Definition: mpegvideo.h:291
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:897
#define VE
#define MV_TYPE_16X16
1 vector for the whole mb
Definition: mpegvideo.h:260
NULL
Definition: eval.c:55
#define MV_DIR_BACKWARD
Definition: mpegvideo.h:257
uint8_t * luma_dc_vlc_length
Definition: mpegvideo.h:308
unsigned int lambda2
(lambda*lambda) >> FF_LAMBDA_SHIFT
Definition: mpegvideo.h:202
ptrdiff_t linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:129
BlockDSPContext bdsp
Definition: mpegvideo.h:218
av_default_item_name
Definition: dnxhdenc.c:55
const uint8_t ff_h263_intra_MCBPC_code[9]
Definition: h263data.c:34
main external API structure.
Definition: avcodec.h:1409
ScanTable intra_scantable
Definition: mpegvideo.h:86
int height
picture size. must be a multiple of 16
Definition: mpegvideo.h:95
uint8_t * buf_end
Definition: put_bits.h:38
av_cold int ff_rl_init(RLTable *rl, uint8_t static_store[2][2 *MAX_RUN+MAX_LEVEL+3])
Definition: rl.c:38
int ff_mpv_encode_init(AVCodecContext *avctx)
int data_partitioning
data partitioning flag from header
Definition: mpegvideo.h:389
int extradata_size
Definition: avcodec.h:1524
uint8_t * inter_ac_vlc_length
Definition: mpegvideo.h:306
int progressive_sequence
Definition: mpegvideo.h:439
uint16_t * intra_matrix
custom intra quantization matrix
Definition: avcodec.h:1963
Describe the class of an AVClass context structure.
Definition: log.h:34
ScanTable intra_h_scantable
Definition: mpegvideo.h:87
int index
Definition: gxfenc.c:72
#define CANDIDATE_MB_TYPE_DIRECT
Definition: mpegutils.h:111
static av_cold int encode_init(AVCodecContext *avctx)
struct AVFrame * f
Definition: mpegpicture.h:46
static int mpeg4_get_block_length(MpegEncContext *s, int16_t *block, int n, int intra_dc, uint8_t *scan_table)
static void ff_h263_encode_motion_vector(MpegEncContext *s, int x, int y, int f_code)
Definition: h263.h:119
RLTable ff_h263_rl_inter
Definition: h263data.c:161
int f_code
forward MV resolution
Definition: mpegvideo.h:229
const uint8_t ff_h263_cbpy_tab[16][2]
Definition: h263data.c:84
uint16_t * inter_matrix
custom inter quantization matrix
Definition: avcodec.h:1970
#define MV_DIR_FORWARD
Definition: mpegvideo.h:256
int max_b_frames
max number of B-frames for encoding
Definition: mpegvideo.h:110
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
Definition: mpegvideo.h:206
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:257
int ff_mpeg4_get_video_packet_prefix_length(MpegEncContext *s)
Definition: mpeg4video.c:30
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:146
const uint8_t * c_dc_scale_table
qscale -> c_dc_scale table
Definition: mpegvideo.h:184
uint8_t level
Definition: svq3.c:204
me_cmp_func sad[6]
Definition: me_cmp.h:42
#define AV_CODEC_FLAG_GLOBAL_HEADER
Place global headers in extradata instead of every keyframe.
Definition: avcodec.h:784
int mv[2][4][2]
motion vectors for a macroblock first coordinate : 0 = forward 1 = backward second " : depend...
Definition: mpegvideo.h:270
MpegEncContext.
Definition: mpegvideo.h:76
int8_t * qscale_table
Definition: mpegpicture.h:50
#define MAX_RUN
Definition: rl.h:35
struct AVCodecContext * avctx
Definition: mpegvideo.h:93
PutBitContext pb
bit output
Definition: mpegvideo.h:146
#define VISUAL_OBJ_STARTCODE
Definition: mpeg4video.h:59
#define CONFIG_MPEG4_ENCODER
Definition: config.h:1069
MECmpContext mecc
Definition: mpegvideo.h:222
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:59
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:125
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:83
int shared
Definition: mpegpicture.h:85
#define AV_CODEC_FLAG2_NO_OUTPUT
Skip bitstream encoding.
Definition: avcodec.h:807
Bi-dir predicted.
Definition: avutil.h:262
static const AVOption options[]
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
int den
denominator
Definition: rational.h:45
int ff_mpv_encode_end(AVCodecContext *avctx)
static av_cold int init(AVCodecParserContext *s)
Definition: h264_parser.c:582
static int get_rl_index(const RLTable *rl, int last, int run, int level)
Definition: rl.h:80
void ff_mpeg4_encode_video_packet_header(MpegEncContext *s)
void * priv_data
Definition: avcodec.h:1451
int last_bits
temp var used for calculating the above vars
Definition: mpegvideo.h:341
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:268
int len
#define av_log2
Definition: intmath.h:85
int16_t(* block)[64]
points to one of the following blocks
Definition: mpegvideo.h:476
PutBitContext tex_pb
used for data partitioned VOPs
Definition: mpegvideo.h:393
Picture next_picture
copy of the next picture structure.
Definition: mpegvideo.h:163
static int get_p_cbp(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
Definition: h263.h:130
Picture ** reordered_input_picture
pointer to the next pictures in coded order for encoding
Definition: mpegvideo.h:133
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1510
#define LIBAVCODEC_IDENT
Definition: version.h:42
void avpriv_put_string(PutBitContext *pb, const char *string, int terminate_string)
Put the string string in the bitstream.
Definition: bitstream.c:51
int workaround_bugs
workaround bugs in encoders which cannot be detected automatically
Definition: mpegvideo.h:114
static int mpeg4_get_dc_length(int level, int n)
void ff_set_mpeg4_time(MpegEncContext *s)
#define AV_CODEC_FLAG_CLOSED_GOP
Definition: avcodec.h:798
static void mpeg4_encode_blocks(MpegEncContext *s, int16_t block[6][64], int intra_dc[6], uint8_t **scan_table, PutBitContext *dc_pb, PutBitContext *ac_pb)
#define MV_TYPE_8X8
4 vectors (H.263, MPEG-4 4MV)
Definition: mpegvideo.h:261
int b_code
backward MV resolution for B-frames (MPEG-4)
Definition: mpegvideo.h:230
int ff_mpv_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
static void mpeg4_encode_dc(PutBitContext *s, int level, int n)
Encode the dc value.
AVPixelFormat
Pixel format.
Definition: pixfmt.h:57
static void mpeg4_encode_vol_header(MpegEncContext *s, int vo_number, int vol_number)
#define OFFSET(x)
AVCodec ff_mpeg4_encoder
Predicted.
Definition: avutil.h:261
#define GOP_STARTCODE
Definition: mpeg4video.h:58
#define VOS_STARTCODE
Definition: mpeg4video.h:56