41 #if HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN 49 const uint16_t *revtabj = s->
revtab;
50 const uint16_t *revtabk = s->
revtab+n4;
59 vec_f cos,sin,cos0,sin0,cos1,sin1,
re,
im,r0,i0,r1,i1,
a,
b,c,d;
60 #define CMULA(p,o0,o1,o2,o3)\ 63 re = vec_perm(a, b, vcprm(0,2,s0,s2)); \ 64 im = vec_perm(a, b, vcprm(s3,s1,3,1)); \ 65 cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); \ 66 sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\ 67 r##p = im*cos - re*sin;\ 68 i##p = re*cos + im*sin; 69 #define STORE2(v,dst)\ 71 vec_ste(v, 0, output+j*2);\ 72 vec_ste(v, 4, output+j*2); 74 a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\ 75 b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\ 76 c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\ 77 d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\ 78 STORE2(a, revtabk[ p*2-4]);\ 79 STORE2(b, revtabk[ p*2-3]);\ 80 STORE2(c, revtabj[-p*2+2]);\ 81 STORE2(d, revtabj[-p*2+3]); 103 #define CMULB(d0,d1,o)\ 108 d0 = im*sin - re*cos;\ 109 d1 = re*sin + im*cos; 113 pout[2*j] = vec_perm(a, d, vcprm(0,s3,1,s2));
114 pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
115 pout[2*k] = vec_perm(c, b, vcprm(0,s3,1,s2));
116 pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
128 vec_u32 sign = {1
U<<31,1
U<<31,1U<<31,1U<<31};
132 imdct_half_altivec(s, output + n4, input);
134 for (k = 0; k < n16; k++) {
137 p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
138 p1[k] = vec_perm(b, b, vcprm(3,2,1,0));
145 #if HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN av_cold void ff_mdct_init_ppc(FFTContext *s)
#define PPC_ALTIVEC(flags)
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Contains misc utility macros and inline functions.
void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().