Libav
vc1_pred.c
Go to the documentation of this file.
1 /*
2  * VC-1 and WMV3 decoder
3  * Copyright (c) 2011 Mashiat Sarker Shakkhar
4  * Copyright (c) 2006-2007 Konstantin Shishkov
5  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6  *
7  * This file is part of Libav.
8  *
9  * Libav is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * Libav is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with Libav; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
29 #include "mathops.h"
30 #include "mpegutils.h"
31 #include "mpegvideo.h"
32 #include "vc1.h"
33 #include "vc1_pred.h"
34 #include "vc1data.h"
35 
36 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
37 {
38  int scaledvalue, refdist;
39  int scalesame1, scalesame2;
40  int scalezone1_x, zone1offset_x;
41  int table_index = dir ^ v->second_field;
42 
43  if (v->s.pict_type != AV_PICTURE_TYPE_B)
44  refdist = v->refdist;
45  else
46  refdist = dir ? v->brfd : v->frfd;
47  if (refdist > 3)
48  refdist = 3;
49  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
50  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
51  scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
52  zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
53 
54  if (FFABS(n) > 255)
55  scaledvalue = n;
56  else {
57  if (FFABS(n) < scalezone1_x)
58  scaledvalue = (n * scalesame1) >> 8;
59  else {
60  if (n < 0)
61  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
62  else
63  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
64  }
65  }
66  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
67 }
68 
69 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
70 {
71  int scaledvalue, refdist;
72  int scalesame1, scalesame2;
73  int scalezone1_y, zone1offset_y;
74  int table_index = dir ^ v->second_field;
75 
76  if (v->s.pict_type != AV_PICTURE_TYPE_B)
77  refdist = v->refdist;
78  else
79  refdist = dir ? v->brfd : v->frfd;
80  if (refdist > 3)
81  refdist = 3;
82  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
83  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
84  scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
85  zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
86 
87  if (FFABS(n) > 63)
88  scaledvalue = n;
89  else {
90  if (FFABS(n) < scalezone1_y)
91  scaledvalue = (n * scalesame1) >> 8;
92  else {
93  if (n < 0)
94  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
95  else
96  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
97  }
98  }
99 
100  if (v->cur_field_type && !v->ref_field_type[dir])
101  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
102  else
103  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
104 }
105 
106 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
107 {
108  int scalezone1_x, zone1offset_x;
109  int scaleopp1, scaleopp2, brfd;
110  int scaledvalue;
111 
112  brfd = FFMIN(v->brfd, 3);
113  scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
114  zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
115  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
116  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
117 
118  if (FFABS(n) > 255)
119  scaledvalue = n;
120  else {
121  if (FFABS(n) < scalezone1_x)
122  scaledvalue = (n * scaleopp1) >> 8;
123  else {
124  if (n < 0)
125  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
126  else
127  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
128  }
129  }
130  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
131 }
132 
133 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
134 {
135  int scalezone1_y, zone1offset_y;
136  int scaleopp1, scaleopp2, brfd;
137  int scaledvalue;
138 
139  brfd = FFMIN(v->brfd, 3);
140  scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
141  zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
142  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
143  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
144 
145  if (FFABS(n) > 63)
146  scaledvalue = n;
147  else {
148  if (FFABS(n) < scalezone1_y)
149  scaledvalue = (n * scaleopp1) >> 8;
150  else {
151  if (n < 0)
152  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
153  else
154  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
155  }
156  }
157  if (v->cur_field_type && !v->ref_field_type[dir]) {
158  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
159  } else {
160  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
161  }
162 }
163 
164 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
165  int dim, int dir)
166 {
167  int brfd, scalesame;
168  int hpel = 1 - v->s.quarter_sample;
169 
170  n >>= hpel;
171  if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
172  if (dim)
173  n = scaleforsame_y(v, i, n, dir) << hpel;
174  else
175  n = scaleforsame_x(v, n, dir) << hpel;
176  return n;
177  }
178  brfd = FFMIN(v->brfd, 3);
179  scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
180 
181  n = (n * scalesame >> 8) << hpel;
182  return n;
183 }
184 
185 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
186  int dim, int dir)
187 {
188  int refdist, scaleopp;
189  int hpel = 1 - v->s.quarter_sample;
190 
191  n >>= hpel;
192  if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
193  if (dim)
194  n = scaleforopp_y(v, n, dir) << hpel;
195  else
196  n = scaleforopp_x(v, n) << hpel;
197  return n;
198  }
199  if (v->s.pict_type != AV_PICTURE_TYPE_B)
200  refdist = FFMIN(v->refdist, 3);
201  else
202  refdist = dir ? v->brfd : v->frfd;
203  scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
204 
205  n = (n * scaleopp >> 8) << hpel;
206  return n;
207 }
208 
211 void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
212  int mv1, int r_x, int r_y, uint8_t* is_intra,
213  int pred_flag, int dir)
214 {
215  MpegEncContext *s = &v->s;
216  int xy, wrap, off = 0;
217  int16_t *A, *B, *C;
218  int px, py;
219  int sum;
220  int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
221  int opposite, a_f, b_f, c_f;
222  int16_t field_predA[2];
223  int16_t field_predB[2];
224  int16_t field_predC[2];
225  int a_valid, b_valid, c_valid;
226  int hybridmv_thresh, y_bias = 0;
227 
228  if (v->mv_mode == MV_PMODE_MIXED_MV ||
230  mixedmv_pic = 1;
231  else
232  mixedmv_pic = 0;
233  /* scale MV difference to be quad-pel */
234  dmv_x <<= 1 - s->quarter_sample;
235  dmv_y <<= 1 - s->quarter_sample;
236 
237  wrap = s->b8_stride;
238  xy = s->block_index[n];
239 
240  if (s->mb_intra) {
241  s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
242  s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
243  s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
244  s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
245  if (mv1) { /* duplicate motion data for 1-MV block */
246  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
247  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
248  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
249  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
250  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
251  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
252  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
253  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
254  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
255  s->current_picture.motion_val[1][xy + wrap][0] = 0;
256  s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
257  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
258  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
259  }
260  return;
261  }
262 
263  C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
264  A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
265  if (mv1) {
266  if (v->field_mode && mixedmv_pic)
267  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
268  else
269  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
270  } else {
271  //in 4-MV mode different blocks have different B predictor position
272  switch (n) {
273  case 0:
274  off = (s->mb_x > 0) ? -1 : 1;
275  break;
276  case 1:
277  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
278  break;
279  case 2:
280  off = 1;
281  break;
282  case 3:
283  off = -1;
284  }
285  }
286  B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
287 
288  a_valid = !s->first_slice_line || (n == 2 || n == 3);
289  b_valid = a_valid && (s->mb_width > 1);
290  c_valid = s->mb_x || (n == 1 || n == 3);
291  if (v->field_mode) {
292  a_valid = a_valid && !is_intra[xy - wrap];
293  b_valid = b_valid && !is_intra[xy - wrap + off];
294  c_valid = c_valid && !is_intra[xy - 1];
295  }
296 
297  if (a_valid) {
298  a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
299  num_oppfield += a_f;
300  num_samefield += 1 - a_f;
301  field_predA[0] = A[0];
302  field_predA[1] = A[1];
303  } else {
304  field_predA[0] = field_predA[1] = 0;
305  a_f = 0;
306  }
307  if (b_valid) {
308  b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
309  num_oppfield += b_f;
310  num_samefield += 1 - b_f;
311  field_predB[0] = B[0];
312  field_predB[1] = B[1];
313  } else {
314  field_predB[0] = field_predB[1] = 0;
315  b_f = 0;
316  }
317  if (c_valid) {
318  c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
319  num_oppfield += c_f;
320  num_samefield += 1 - c_f;
321  field_predC[0] = C[0];
322  field_predC[1] = C[1];
323  } else {
324  field_predC[0] = field_predC[1] = 0;
325  c_f = 0;
326  }
327 
328  if (v->field_mode) {
329  if (!v->numref)
330  // REFFIELD determines if the last field or the second-last field is
331  // to be used as reference
332  opposite = 1 - v->reffield;
333  else {
334  if (num_samefield <= num_oppfield)
335  opposite = 1 - pred_flag;
336  else
337  opposite = pred_flag;
338  }
339  } else
340  opposite = 0;
341  if (opposite) {
342  if (a_valid && !a_f) {
343  field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
344  field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
345  }
346  if (b_valid && !b_f) {
347  field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
348  field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
349  }
350  if (c_valid && !c_f) {
351  field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
352  field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
353  }
354  v->mv_f[dir][xy + v->blocks_off] = 1;
355  v->ref_field_type[dir] = !v->cur_field_type;
356  } else {
357  if (a_valid && a_f) {
358  field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
359  field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
360  }
361  if (b_valid && b_f) {
362  field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
363  field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
364  }
365  if (c_valid && c_f) {
366  field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
367  field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
368  }
369  v->mv_f[dir][xy + v->blocks_off] = 0;
370  v->ref_field_type[dir] = v->cur_field_type;
371  }
372 
373  if (a_valid) {
374  px = field_predA[0];
375  py = field_predA[1];
376  } else if (c_valid) {
377  px = field_predC[0];
378  py = field_predC[1];
379  } else if (b_valid) {
380  px = field_predB[0];
381  py = field_predB[1];
382  } else {
383  px = 0;
384  py = 0;
385  }
386 
387  if (num_samefield + num_oppfield > 1) {
388  px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
389  py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
390  }
391 
392  /* Pullback MV as specified in 8.3.5.3.4 */
393  if (!v->field_mode) {
394  int qx, qy, X, Y;
395  qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
396  qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
397  X = (s->mb_width << 6) - 4;
398  Y = (s->mb_height << 6) - 4;
399  if (mv1) {
400  if (qx + px < -60) px = -60 - qx;
401  if (qy + py < -60) py = -60 - qy;
402  } else {
403  if (qx + px < -28) px = -28 - qx;
404  if (qy + py < -28) py = -28 - qy;
405  }
406  if (qx + px > X) px = X - qx;
407  if (qy + py > Y) py = Y - qy;
408  }
409 
410  if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
411  /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
412  hybridmv_thresh = 32;
413  if (a_valid && c_valid) {
414  if (is_intra[xy - wrap])
415  sum = FFABS(px) + FFABS(py);
416  else
417  sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
418  if (sum > hybridmv_thresh) {
419  if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
420  px = field_predA[0];
421  py = field_predA[1];
422  } else {
423  px = field_predC[0];
424  py = field_predC[1];
425  }
426  } else {
427  if (is_intra[xy - 1])
428  sum = FFABS(px) + FFABS(py);
429  else
430  sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
431  if (sum > hybridmv_thresh) {
432  if (get_bits1(&s->gb)) {
433  px = field_predA[0];
434  py = field_predA[1];
435  } else {
436  px = field_predC[0];
437  py = field_predC[1];
438  }
439  }
440  }
441  }
442  }
443 
444  if (v->field_mode && v->numref)
445  r_y >>= 1;
446  if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
447  y_bias = 1;
448  /* store MV using signed modulus of MV range defined in 4.11 */
449  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
450  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
451  if (mv1) { /* duplicate motion data for 1-MV block */
452  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
453  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
454  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
455  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
456  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
457  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
458  v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
459  v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
460  }
461 }
462 
465 void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
466  int mvn, int r_x, int r_y, uint8_t* is_intra, int dir)
467 {
468  MpegEncContext *s = &v->s;
469  int xy, wrap, off = 0;
470  int A[2], B[2], C[2];
471  int px = 0, py = 0;
472  int a_valid = 0, b_valid = 0, c_valid = 0;
473  int field_a, field_b, field_c; // 0: same, 1: opposite
474  int total_valid, num_samefield, num_oppfield;
475  int pos_c, pos_b, n_adj;
476 
477  wrap = s->b8_stride;
478  xy = s->block_index[n];
479 
480  if (s->mb_intra) {
481  s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
482  s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
483  s->current_picture.motion_val[1][xy][0] = 0;
484  s->current_picture.motion_val[1][xy][1] = 0;
485  if (mvn == 1) { /* duplicate motion data for 1-MV block */
486  s->current_picture.motion_val[0][xy + 1][0] = 0;
487  s->current_picture.motion_val[0][xy + 1][1] = 0;
488  s->current_picture.motion_val[0][xy + wrap][0] = 0;
489  s->current_picture.motion_val[0][xy + wrap][1] = 0;
490  s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
491  s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
492  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
493  s->current_picture.motion_val[1][xy + 1][0] = 0;
494  s->current_picture.motion_val[1][xy + 1][1] = 0;
495  s->current_picture.motion_val[1][xy + wrap][0] = 0;
496  s->current_picture.motion_val[1][xy + wrap][1] = 0;
497  s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
498  s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
499  }
500  return;
501  }
502 
503  off = ((n == 0) || (n == 1)) ? 1 : -1;
504  /* predict A */
505  if (s->mb_x || (n == 1) || (n == 3)) {
506  if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
507  || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
508  A[0] = s->current_picture.motion_val[dir][xy - 1][0];
509  A[1] = s->current_picture.motion_val[dir][xy - 1][1];
510  a_valid = 1;
511  } else { // current block has frame mv and cand. has field MV (so average)
512  A[0] = (s->current_picture.motion_val[dir][xy - 1][0]
513  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][0] + 1) >> 1;
514  A[1] = (s->current_picture.motion_val[dir][xy - 1][1]
515  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][1] + 1) >> 1;
516  a_valid = 1;
517  }
518  if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
519  a_valid = 0;
520  A[0] = A[1] = 0;
521  }
522  } else
523  A[0] = A[1] = 0;
524  /* Predict B and C */
525  B[0] = B[1] = C[0] = C[1] = 0;
526  if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
527  if (!s->first_slice_line) {
528  if (!v->is_intra[s->mb_x - s->mb_stride]) {
529  b_valid = 1;
530  n_adj = n | 2;
531  pos_b = s->block_index[n_adj] - 2 * wrap;
532  if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
533  n_adj = (n & 2) | (n & 1);
534  }
535  B[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][0];
536  B[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][1];
537  if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
538  B[0] = (B[0] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
539  B[1] = (B[1] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
540  }
541  }
542  if (s->mb_width > 1) {
543  if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
544  c_valid = 1;
545  n_adj = 2;
546  pos_c = s->block_index[2] - 2 * wrap + 2;
547  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
548  n_adj = n & 2;
549  }
550  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][0];
551  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][1];
552  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
553  C[0] = (1 + C[0] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
554  C[1] = (1 + C[1] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
555  }
556  if (s->mb_x == s->mb_width - 1) {
557  if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
558  c_valid = 1;
559  n_adj = 3;
560  pos_c = s->block_index[3] - 2 * wrap - 2;
561  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
562  n_adj = n | 1;
563  }
564  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][0];
565  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][1];
566  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
567  C[0] = (1 + C[0] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
568  C[1] = (1 + C[1] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
569  }
570  } else
571  c_valid = 0;
572  }
573  }
574  }
575  }
576  } else {
577  pos_b = s->block_index[1];
578  b_valid = 1;
579  B[0] = s->current_picture.motion_val[dir][pos_b][0];
580  B[1] = s->current_picture.motion_val[dir][pos_b][1];
581  pos_c = s->block_index[0];
582  c_valid = 1;
583  C[0] = s->current_picture.motion_val[dir][pos_c][0];
584  C[1] = s->current_picture.motion_val[dir][pos_c][1];
585  }
586 
587  total_valid = a_valid + b_valid + c_valid;
588  // check if predictor A is out of bounds
589  if (!s->mb_x && !(n == 1 || n == 3)) {
590  A[0] = A[1] = 0;
591  }
592  // check if predictor B is out of bounds
593  if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
594  B[0] = B[1] = C[0] = C[1] = 0;
595  }
596  if (!v->blk_mv_type[xy]) {
597  if (s->mb_width == 1) {
598  px = B[0];
599  py = B[1];
600  } else {
601  if (total_valid >= 2) {
602  px = mid_pred(A[0], B[0], C[0]);
603  py = mid_pred(A[1], B[1], C[1]);
604  } else if (total_valid) {
605  if (a_valid) { px = A[0]; py = A[1]; }
606  if (b_valid) { px = B[0]; py = B[1]; }
607  if (c_valid) { px = C[0]; py = C[1]; }
608  }
609  }
610  } else {
611  if (a_valid)
612  field_a = (A[1] & 4) ? 1 : 0;
613  else
614  field_a = 0;
615  if (b_valid)
616  field_b = (B[1] & 4) ? 1 : 0;
617  else
618  field_b = 0;
619  if (c_valid)
620  field_c = (C[1] & 4) ? 1 : 0;
621  else
622  field_c = 0;
623 
624  num_oppfield = field_a + field_b + field_c;
625  num_samefield = total_valid - num_oppfield;
626  if (total_valid == 3) {
627  if ((num_samefield == 3) || (num_oppfield == 3)) {
628  px = mid_pred(A[0], B[0], C[0]);
629  py = mid_pred(A[1], B[1], C[1]);
630  } else if (num_samefield >= num_oppfield) {
631  /* take one MV from same field set depending on priority
632  the check for B may not be necessary */
633  px = !field_a ? A[0] : B[0];
634  py = !field_a ? A[1] : B[1];
635  } else {
636  px = field_a ? A[0] : B[0];
637  py = field_a ? A[1] : B[1];
638  }
639  } else if (total_valid == 2) {
640  if (num_samefield >= num_oppfield) {
641  if (!field_a && a_valid) {
642  px = A[0];
643  py = A[1];
644  } else if (!field_b && b_valid) {
645  px = B[0];
646  py = B[1];
647  } else if (c_valid) {
648  px = C[0];
649  py = C[1];
650  }
651  } else {
652  if (field_a && a_valid) {
653  px = A[0];
654  py = A[1];
655  } else if (field_b && b_valid) {
656  px = B[0];
657  py = B[1];
658  }
659  }
660  } else if (total_valid == 1) {
661  px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
662  py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
663  }
664  }
665 
666  /* store MV using signed modulus of MV range defined in 4.11 */
667  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
668  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
669  if (mvn == 1) { /* duplicate motion data for 1-MV block */
670  s->current_picture.motion_val[dir][xy + 1 ][0] = s->current_picture.motion_val[dir][xy][0];
671  s->current_picture.motion_val[dir][xy + 1 ][1] = s->current_picture.motion_val[dir][xy][1];
672  s->current_picture.motion_val[dir][xy + wrap ][0] = s->current_picture.motion_val[dir][xy][0];
673  s->current_picture.motion_val[dir][xy + wrap ][1] = s->current_picture.motion_val[dir][xy][1];
674  s->current_picture.motion_val[dir][xy + wrap + 1][0] = s->current_picture.motion_val[dir][xy][0];
675  s->current_picture.motion_val[dir][xy + wrap + 1][1] = s->current_picture.motion_val[dir][xy][1];
676  } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
677  s->current_picture.motion_val[dir][xy + 1][0] = s->current_picture.motion_val[dir][xy][0];
678  s->current_picture.motion_val[dir][xy + 1][1] = s->current_picture.motion_val[dir][xy][1];
679  s->mv[dir][n + 1][0] = s->mv[dir][n][0];
680  s->mv[dir][n + 1][1] = s->mv[dir][n][1];
681  }
682 }
683 
684 void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
685  int direct, int mvtype)
686 {
687  MpegEncContext *s = &v->s;
688  int xy, wrap, off = 0;
689  int16_t *A, *B, *C;
690  int px, py;
691  int sum;
692  int r_x, r_y;
693  const uint8_t *is_intra = v->mb_type[0];
694 
695  r_x = v->range_x;
696  r_y = v->range_y;
697  /* scale MV difference to be quad-pel */
698  dmv_x[0] <<= 1 - s->quarter_sample;
699  dmv_y[0] <<= 1 - s->quarter_sample;
700  dmv_x[1] <<= 1 - s->quarter_sample;
701  dmv_y[1] <<= 1 - s->quarter_sample;
702 
703  wrap = s->b8_stride;
704  xy = s->block_index[0];
705 
706  if (s->mb_intra) {
707  s->current_picture.motion_val[0][xy + v->blocks_off][0] =
708  s->current_picture.motion_val[0][xy + v->blocks_off][1] =
709  s->current_picture.motion_val[1][xy + v->blocks_off][0] =
710  s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
711  return;
712  }
713  if (!v->field_mode) {
714  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
715  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
716  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
717  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
718 
719  /* Pullback predicted motion vectors as specified in 8.4.5.4 */
720  s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
721  s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
722  s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
723  s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
724  }
725  if (direct) {
726  s->current_picture.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
727  s->current_picture.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
728  s->current_picture.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
729  s->current_picture.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
730  return;
731  }
732 
733  if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
734  C = s->current_picture.motion_val[0][xy - 2];
735  A = s->current_picture.motion_val[0][xy - wrap * 2];
736  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
737  B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
738 
739  if (!s->mb_x) C[0] = C[1] = 0;
740  if (!s->first_slice_line) { // predictor A is not out of bounds
741  if (s->mb_width == 1) {
742  px = A[0];
743  py = A[1];
744  } else {
745  px = mid_pred(A[0], B[0], C[0]);
746  py = mid_pred(A[1], B[1], C[1]);
747  }
748  } else if (s->mb_x) { // predictor C is not out of bounds
749  px = C[0];
750  py = C[1];
751  } else {
752  px = py = 0;
753  }
754  /* Pullback MV as specified in 8.3.5.3.4 */
755  {
756  int qx, qy, X, Y;
757  if (v->profile < PROFILE_ADVANCED) {
758  qx = (s->mb_x << 5);
759  qy = (s->mb_y << 5);
760  X = (s->mb_width << 5) - 4;
761  Y = (s->mb_height << 5) - 4;
762  if (qx + px < -28) px = -28 - qx;
763  if (qy + py < -28) py = -28 - qy;
764  if (qx + px > X) px = X - qx;
765  if (qy + py > Y) py = Y - qy;
766  } else {
767  qx = (s->mb_x << 6);
768  qy = (s->mb_y << 6);
769  X = (s->mb_width << 6) - 4;
770  Y = (s->mb_height << 6) - 4;
771  if (qx + px < -60) px = -60 - qx;
772  if (qy + py < -60) py = -60 - qy;
773  if (qx + px > X) px = X - qx;
774  if (qy + py > Y) py = Y - qy;
775  }
776  }
777  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
778  if (0 && !s->first_slice_line && s->mb_x) {
779  if (is_intra[xy - wrap])
780  sum = FFABS(px) + FFABS(py);
781  else
782  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
783  if (sum > 32) {
784  if (get_bits1(&s->gb)) {
785  px = A[0];
786  py = A[1];
787  } else {
788  px = C[0];
789  py = C[1];
790  }
791  } else {
792  if (is_intra[xy - 2])
793  sum = FFABS(px) + FFABS(py);
794  else
795  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
796  if (sum > 32) {
797  if (get_bits1(&s->gb)) {
798  px = A[0];
799  py = A[1];
800  } else {
801  px = C[0];
802  py = C[1];
803  }
804  }
805  }
806  }
807  /* store MV using signed modulus of MV range defined in 4.11 */
808  s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
809  s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
810  }
811  if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
812  C = s->current_picture.motion_val[1][xy - 2];
813  A = s->current_picture.motion_val[1][xy - wrap * 2];
814  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
815  B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
816 
817  if (!s->mb_x)
818  C[0] = C[1] = 0;
819  if (!s->first_slice_line) { // predictor A is not out of bounds
820  if (s->mb_width == 1) {
821  px = A[0];
822  py = A[1];
823  } else {
824  px = mid_pred(A[0], B[0], C[0]);
825  py = mid_pred(A[1], B[1], C[1]);
826  }
827  } else if (s->mb_x) { // predictor C is not out of bounds
828  px = C[0];
829  py = C[1];
830  } else {
831  px = py = 0;
832  }
833  /* Pullback MV as specified in 8.3.5.3.4 */
834  {
835  int qx, qy, X, Y;
836  if (v->profile < PROFILE_ADVANCED) {
837  qx = (s->mb_x << 5);
838  qy = (s->mb_y << 5);
839  X = (s->mb_width << 5) - 4;
840  Y = (s->mb_height << 5) - 4;
841  if (qx + px < -28) px = -28 - qx;
842  if (qy + py < -28) py = -28 - qy;
843  if (qx + px > X) px = X - qx;
844  if (qy + py > Y) py = Y - qy;
845  } else {
846  qx = (s->mb_x << 6);
847  qy = (s->mb_y << 6);
848  X = (s->mb_width << 6) - 4;
849  Y = (s->mb_height << 6) - 4;
850  if (qx + px < -60) px = -60 - qx;
851  if (qy + py < -60) py = -60 - qy;
852  if (qx + px > X) px = X - qx;
853  if (qy + py > Y) py = Y - qy;
854  }
855  }
856  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
857  if (0 && !s->first_slice_line && s->mb_x) {
858  if (is_intra[xy - wrap])
859  sum = FFABS(px) + FFABS(py);
860  else
861  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
862  if (sum > 32) {
863  if (get_bits1(&s->gb)) {
864  px = A[0];
865  py = A[1];
866  } else {
867  px = C[0];
868  py = C[1];
869  }
870  } else {
871  if (is_intra[xy - 2])
872  sum = FFABS(px) + FFABS(py);
873  else
874  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
875  if (sum > 32) {
876  if (get_bits1(&s->gb)) {
877  px = A[0];
878  py = A[1];
879  } else {
880  px = C[0];
881  py = C[1];
882  }
883  }
884  }
885  }
886  /* store MV using signed modulus of MV range defined in 4.11 */
887 
888  s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
889  s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
890  }
891  s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
892  s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
893  s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
894  s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
895 }
896 
897 void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y,
898  int mv1, int *pred_flag)
899 {
900  int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
901  MpegEncContext *s = &v->s;
902  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
903 
904  if (v->bmvtype == BMV_TYPE_DIRECT) {
905  int total_opp, k, f;
906  if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
907  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
908  v->bfraction, 0, s->quarter_sample);
909  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
910  v->bfraction, 0, s->quarter_sample);
911  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
912  v->bfraction, 1, s->quarter_sample);
913  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
914  v->bfraction, 1, s->quarter_sample);
915 
916  total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
917  + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
918  + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
919  + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
920  f = (total_opp > 2) ? 1 : 0;
921  } else {
922  s->mv[0][0][0] = s->mv[0][0][1] = 0;
923  s->mv[1][0][0] = s->mv[1][0][1] = 0;
924  f = 0;
925  }
926  v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
927  for (k = 0; k < 4; k++) {
928  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
929  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
930  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
931  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
932  v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
933  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
934  }
935  return;
936  }
937  if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
938  ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
939  ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
940  return;
941  }
942  if (dir) { // backward
943  ff_vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
944  if (n == 3 || mv1) {
945  ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
946  }
947  } else { // forward
948  ff_vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
949  if (n == 3 || mv1) {
950  ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
951  }
952  }
953 }
void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t *is_intra, int pred_flag, int dir)
Predict and set motion vector.
Definition: vc1_pred.c:211
The VC1 Context.
Definition: vc1.h:158
int reffield
if numref = 0 (1 reference) then reffield decides which
Definition: vc1.h:342
static av_always_inline int scaleforopp_x(VC1Context *v, int n)
Definition: vc1_pred.c:106
static av_always_inline int scaleforsame(VC1Context *v, int i, int n, int dim, int dir)
Definition: vc1_pred.c:164
#define MB_TYPE_INTRA
Definition: mpegutils.h:75
int frfd
Definition: vc1.h:351
mpegvideo header.
uint8_t * mv_f[2]
0: MV obtained from same field, 1: opposite field
Definition: vc1.h:334
int range_x
Definition: vc1.h:221
const uint16_t ff_vc1_b_field_mvpred_scales[7][4]
Definition: vc1data.c:1121
int refdist
distance of the current picture from reference
Definition: vc1.h:339
VC-1 tables.
void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
Definition: vc1_pred.c:897
uint8_t
Definition: vf_drawbox.c:37
static av_always_inline int scaleforopp_y(VC1Context *v, int n, int dir)
Definition: vc1_pred.c:133
int second_field
Definition: vc1.h:338
Picture current_picture
copy of the current picture structure.
Definition: mpegvideo.h:175
int16_t bfraction
Relative position % anchors=> how to scale MVs.
Definition: vc1.h:256
int16_t((* luma_mv)[2]
Definition: vc1.h:372
int profile
Sequence header data for all Profiles TODO: choose between ints, uint8_ts and monobit flags...
Definition: vc1.h:203
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:124
#define B
Definition: huffyuv.h:49
int range_y
MV range.
Definition: vc1.h:221
static void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp)
Definition: cavs.c:527
static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n, int dir)
Definition: vc1_pred.c:69
#define wrap(func)
Definition: neontest.h:62
int quarter_sample
1->qpel, 0->half pel ME/MC
Definition: mpegvideo.h:386
GetBitContext gb
Definition: mpegvideo.h:431
uint8_t * blk_mv_type
0: frame MV, 1: field MV (interlaced frame)
Definition: vc1.h:333
int cur_field_type
0: top, 1: bottom
Definition: vc1.h:346
#define FFMIN(a, b)
Definition: common.h:66
int field_mode
1 for interlaced field pictures
Definition: vc1.h:336
uint8_t mv_mode
Frame decoding info for all profiles.
Definition: vc1.h:217
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
int mb_off
Definition: vc1.h:348
#define FFABS(a)
Definition: common.h:61
const uint16_t ff_vc1_field_mvpred_scales[2][7][4]
Definition: vc1data.c:1097
int block_index[6]
index to current MB in block based arrays with edges
Definition: mpegvideo.h:287
int first_slice_line
used in MPEG-4 too to handle resync markers
Definition: mpegvideo.h:419
static av_always_inline int scaleforsame_x(VC1Context *v, int n, int dir)
Definition: vc1_pred.c:36
uint8_t * is_intra
Definition: vc1.h:371
void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
Definition: vc1_pred.c:684
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:267
Definition: vf_drawbox.c:37
#define mid_pred
Definition: mathops.h:99
int dim
int ref_field_type[2]
forward and backward reference field type (top or bottom)
Definition: vc1.h:347
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
Definition: mpegvideo.h:206
int numref
number of past field pictures used as reference
Definition: vc1.h:340
int blocks_off
Definition: vc1.h:348
int mv[2][4][2]
motion vectors for a macroblock first coordinate : 0 = forward 1 = backward second " : depend...
Definition: mpegvideo.h:270
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
Definition: mpegvideo.h:126
MpegEncContext s
Definition: vc1.h:159
MpegEncContext.
Definition: mpegvideo.h:76
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:125
Bi-dir predicted.
Definition: avutil.h:262
void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y, int mvn, int r_x, int r_y, uint8_t *is_intra, int dir)
Predict and set motion vector for interlaced frame picture MBs.
Definition: vc1_pred.c:465
int bmvtype
Definition: vc1.h:350
Picture next_picture
copy of the next picture structure.
Definition: mpegvideo.h:163
int brfd
reference frame distance (forward or backward)
Definition: vc1.h:351
uint32_t * mb_type
types and macros are defined in mpegutils.h
Definition: mpegpicture.h:56
#define av_always_inline
Definition: attributes.h:40
uint8_t mv_mode2
Secondary MV coding mode (B-frames)
Definition: vc1.h:218
uint8_t * mv_f_next[2]
Definition: vc1.h:335
uint8_t * mb_type[3]
Definition: vc1.h:248
static av_always_inline int scaleforopp(VC1Context *v, int n, int dim, int dir)
Definition: vc1_pred.c:185