mxnet
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
Namespaces | Classes | Typedefs | Enumerations | Functions
mxnet Namespace Reference

namespace of mxnet More...

Namespaces

 common
 
 engine
 namespace of engine internal types.
 
 op
 namespace of arguments
 

Classes

struct  Context
 Context information about the execution enviroment. More...
 
struct  RunContext
 execution time context. The information needed in runtime for actual execution. More...
 
class  Engine
 Dependency engine that schedules operations. More...
 
class  IIterator
 iterator type More...
 
struct  DataInst
 a single data instance More...
 
struct  DataBatch
 DataBatch of NDArray, returned by Iterator. More...
 
struct  DataIteratorReg
 Registry entry for DataIterator factory functions. More...
 
class  KVStore
 distributed key-value store More...
 
class  NDArray
 ndarray interface More...
 
struct  NDArrayFunctionReg
 Registry entry for NDArrayFunction. More...
 
struct  OpContext
 All the possible information needed by Operator.Forward and Backward This is the superset of RunContext. We use this data structure to bookkeep everything needed by Forward and Backward. More...
 
class  Operator
 Operator interface. Operator defins basic operation unit of optimized computation graph in mxnet. This interface relies on pre-allocated memory in TBlob, the caller need to set the memory region in TBlob correctly before calling Forward and Backward. More...
 
class  OperatorProperty
 OperatorProperty is a object that stores all information about Operator. It also contains method to generate context(device) specific operators. More...
 
struct  OperatorPropertyReg
 Registry entry for OperatorProperty factory functions. More...
 
class  Optimizer
 
struct  OptimizerReg
 Registry entry for Optimizer factory functions. More...
 
struct  ResourceRequest
 The resources that can be requested by Operator. More...
 
struct  Resource
 Resources used by mxnet operations. A resource is something special other than NDArray, but will still participate. More...
 
class  ResourceManager
 Global resource manager. More...
 
class  Storage
 Storage manager across multiple devices. More...
 
class  Symbol
 Symbol is used to represent dynamically generated symbolic computation graph. More...
 
class  Executor
 Executor of a computation graph. Executor can be created by Binding a symbol. More...
 

Typedefs

typedef mshadow::cpu cpu
 mxnet cpu More...
 
typedef mshadow::gpu gpu
 mxnet gpu More...
 
typedef mshadow::index_t index_t
 index type usually use unsigned More...
 
typedef mshadow::default_real_t real_t
 data type that will be used to store ndarray More...
 
typedef mshadow::TShape TShape
 dynamic shape type More...
 
typedef mshadow::TBlob TBlob
 storage container type More...
 
typedef std::function
< IIterator< DataBatch > *()> 
DataIteratorFactory
 typedef the factory function of data iterator More...
 
typedef std::function< void(NDArray
**used_vars, real_t *scalars,
NDArray **mutate_vars, int
num_params, char **param_keys,
char **param_vals)> 
NDArrayAPIFunction
 definition of NDArray function More...
 
typedef std::function
< OperatorProperty *()> 
OperatorPropertyFactory
 typedef the factory function of operator property More...
 
typedef std::function
< Optimizer *()> 
OptimizerFactory
 typedef the factory function of Optimizer More...
 

Enumerations

enum  FnProperty {
  FnProperty::kNormal, FnProperty::kCopyFromGPU, FnProperty::kCopyToGPU, FnProperty::kCPUPrioritized,
  FnProperty::kAsync
}
 Function property, used to hint what action is pushed to engine. More...
 
enum  NDArrayFunctionTypeMask { kNDArrayArgBeforeScalar = 1, kScalarArgBeforeNDArray = 1 << 1, kAcceptEmptyMutateTarget = 1 << 2 }
 mask information on how functions can be exposed More...
 
enum  OpReqType { kNullOp, kWriteTo, kWriteInplace, kAddTo }
 operation request type to Forward and Backward More...
 

Functions

void CopyFromTo (const NDArray &from, NDArray *to, int priority=0)
 issue an copy operation from one NDArray to another the two ndarray can sit on different devices this operation will be scheduled by the engine More...
 
void ElementwiseSum (const std::vector< NDArray > &source, NDArray *out, int priority=0)
 Perform elementwise sum over each data from source, store result into out. More...
 
NDArray operator+ (const NDArray &lhs, const NDArray &rhs)
 elementwise add More...
 
NDArray operator+ (const NDArray &lhs, const real_t &rhs)
 elementwise add More...
 
NDArray operator- (const NDArray &lhs, const NDArray &rhs)
 elementwise substraction More...
 
NDArray operator- (const NDArray &lhs, const real_t &rhs)
 elementwise substraction More...
 
NDArray operator* (const NDArray &lhs, const NDArray &rhs)
 elementwise multiplication More...
 
NDArray operator* (const NDArray &lhs, const real_t &rhs)
 elementwise multiplication More...
 
NDArray operator/ (const NDArray &lhs, const NDArray &rhs)
 elementwise division More...
 
NDArray operator/ (const NDArray &lhs, const real_t &rhs)
 elementwise division More...
 
void RandomSeed (uint32_t seed)
 Seed the random number generator. More...
 
void SampleUniform (real_t begin, real_t end, NDArray *out)
 Sample uniform distribution for each elements of out. More...
 
void SampleGaussian (real_t mu, real_t sigma, NDArray *out)
 Sample gaussian distribution for each elements of out. More...
 

Detailed Description

namespace of mxnet

Copyright (c) 2015 by Contributors

Typedef Documentation

typedef mshadow::cpu mxnet::cpu

mxnet cpu

typedef std::function<IIterator<DataBatch> *()> mxnet::DataIteratorFactory

typedef the factory function of data iterator

typedef mshadow::gpu mxnet::gpu

mxnet gpu

typedef mshadow::index_t mxnet::index_t

index type usually use unsigned

typedef std::function<void (NDArray **used_vars, real_t *scalars, NDArray **mutate_vars, int num_params, char **param_keys, char **param_vals)> mxnet::NDArrayAPIFunction

definition of NDArray function

typedef the factory function of operator property

typedef std::function<Optimizer *()> mxnet::OptimizerFactory

typedef the factory function of Optimizer

typedef mshadow::default_real_t mxnet::real_t

data type that will be used to store ndarray

typedef mshadow::TBlob mxnet::TBlob

storage container type

typedef mshadow::TShape mxnet::TShape

dynamic shape type

Enumeration Type Documentation

enum mxnet::FnProperty
strong

Function property, used to hint what action is pushed to engine.

Enumerator
kNormal 

Normal operation.

kCopyFromGPU 

Copy operation from GPU to other devices.

kCopyToGPU 

Copy operation from CPU to other devices.

kCPUPrioritized 

Prioritized sync operation on CPU.

kAsync 

Asynchronous function call.

mask information on how functions can be exposed

Enumerator
kNDArrayArgBeforeScalar 

all the use_vars should go before scalar

kScalarArgBeforeNDArray 

all the scalar should go before use_vars

kAcceptEmptyMutateTarget 

whether this function allows the handles in the target to be empty NDArray that are not yet initialized, and will initialize them when the function is invoked.

most function should support this, except copy between different devices, which requires the NDArray to be pre-initialized with context

operation request type to Forward and Backward

Enumerator
kNullOp 

no operation, do not write anything

kWriteTo 

write gradient to provided space

kWriteInplace 

perform an inplace write, Target shares memory with one of input arguments. This option only happen when

kAddTo 

add to the provided space

Function Documentation

void mxnet::CopyFromTo ( const NDArray &  from,
NDArray *  to,
int  priority = 0 
)

issue an copy operation from one NDArray to another the two ndarray can sit on different devices this operation will be scheduled by the engine

Parameters
fromthe ndarray we want to copy data from
tothe target ndarray
priorityPriority of the action.
Note
The function name explicitly marks the order of from and to due to different possible convention carried by copy function.
void mxnet::ElementwiseSum ( const std::vector< NDArray > &  source,
NDArray *  out,
int  priority = 0 
)

Perform elementwise sum over each data from source, store result into out.

Parameters
sourcethe ndarray we want to sum
outthe target ndarray
priorityPriority of the action.
NDArray mxnet::operator* ( const NDArray &  lhs,
const NDArray &  rhs 
)

elementwise multiplication

Parameters
lhsleft operand
rhsright operand
Returns
a new result ndarray
NDArray mxnet::operator* ( const NDArray &  lhs,
const real_t &  rhs 
)

elementwise multiplication

Parameters
lhsleft operand
rhsright operand
Returns
a new result ndarray
NDArray mxnet::operator+ ( const NDArray &  lhs,
const NDArray &  rhs 
)

elementwise add

Parameters
lhsleft operand
rhsright operand
Returns
a new result ndarray
NDArray mxnet::operator+ ( const NDArray &  lhs,
const real_t &  rhs 
)

elementwise add

Parameters
lhsleft operand
rhsright operand
Returns
a new result ndarray
NDArray mxnet::operator- ( const NDArray &  lhs,
const NDArray &  rhs 
)

elementwise substraction

Parameters
lhsleft operand
rhsright operand
Returns
a new result ndarray
NDArray mxnet::operator- ( const NDArray &  lhs,
const real_t &  rhs 
)

elementwise substraction

Parameters
lhsleft operand
rhsright operand
Returns
a new result ndarray
NDArray mxnet::operator/ ( const NDArray &  lhs,
const NDArray &  rhs 
)

elementwise division

Parameters
lhsleft operand
rhsright operand
Returns
a new result ndarray
NDArray mxnet::operator/ ( const NDArray &  lhs,
const real_t &  rhs 
)

elementwise division

Parameters
lhsleft operand
rhsright operand
Returns
a new result ndarray
void mxnet::RandomSeed ( uint32_t  seed)

Seed the random number generator.

Parameters
seedthe seed to set to global random number generators.
void mxnet::SampleGaussian ( real_t  mu,
real_t  sigma,
NDArray *  out 
)

Sample gaussian distribution for each elements of out.

Parameters
mumean of gaussian distribution.
sigmastandard deviation of gaussian distribution.
outoutput NDArray.
void mxnet::SampleUniform ( real_t  begin,
real_t  end,
NDArray *  out 
)

Sample uniform distribution for each elements of out.

Parameters
beginlower bound of distribution.
endupper bound of distribution.
outoutput NDArray.