
Sphinx Documentation

version 0.6.4

Georg Brandl

January 12, 2010

Contents
Sphinx documentation contents 5

Introduction 5

Conversion from other systems 5

Prerequisites 6

Setting up the documentation sources 6

Running a build 6

Sphinx concepts 7

Document names 7

The TOC tree 7

Special names 8

reStructuredText Primer 9

Paragraphs 9

Inline markup 9

Lists and Quotes 10

Source Code 10

Hyperlinks 11

External links 11

Internal links 11

Sections 11

Explicit Markup 11

Directives 11

Images 12

Footnotes 12

Citations 12

Substitutions 12

Comments 13

Source encoding 13

Gotchas 13

Sphinx Markup Constructs 13

Module-specific markup 13

Object description units 14

Signatures 15

Info field lists 16

Command-line program markup 16

Custom description units 17

Paragraph-level markup 17

Table-of-contents markup 19

Index-generating markup 19

Glossary 19

Grammar production displays 20

Showing code examples 20

Line numbers 21

Includes 21

Inline markup 22

Cross-referencing syntax 22

Cross-referencing Python objects 22

Cross-referencing C constructs 23

Cross-referencing other items of interest 23

Cross-referencing arbitrary locations 24

Cross-referencing documents 24

Referencing downloadable files 25

Other semantic markup 25

Substitutions 26

Miscellaneous markup 27

File-wide metadata 27

Meta-information markup 27

Including content based on tags 27

Tables 27

Available builders 28

Serialization builder details 30

The build configuration file 31

General configuration 31

Project information 32

Options for HTML output 34

Options for LaTeX output 36

HTML theming support 38

Using a theme 38

Builtin themes 38

Creating themes 39

Templating 40

Static templates 40

Templating 40

Do I need to use Sphinx' templates to produce HTML? 40

Jinja/Sphinx Templating Primer 40

Working with the builtin templates 41

Blocks 41

Configuration Variables 42

Helper Functions 42

Global Variables 42

Sphinx Extensions 44

Tutorial: Writing a simple extension 44

Build Phases 45

Extension Design 45

The Setup Function 45

The Node Classes 46

The Directive Classes 46

The Event Handlers 48

Extension API 49

Sphinx core events 52

The template bridge 53

Writing new builders 53

Builtin Sphinx extensions 54

sphinx.ext.autodoc -- Include documentation from docstrings 54

Docstring preprocessing 57

Skipping members 58

sphinx.ext.autosummary -- Generate autodoc summaries 58

sphinx-autogen -- generate autodoc stub pages 59

Generating stub pages automatically 59

Customizing templates 59

sphinx.ext.doctest -- Test snippets in the documentation 61

sphinx.ext.intersphinx -- Link to other projects' documentation 63

Math support in Sphinx 64

sphinx.ext.pngmath -- Render math as PNG images 65

sphinx.ext.jsmath -- Render math via JavaScript 66

sphinx.ext.graphviz -- Add Graphviz graphs 66

sphinx.ext.inheritance_diagram -- Include inheritance diagrams 67

sphinx.ext.refcounting -- Keep track of reference counting behavior 68

sphinx.ext.ifconfig -- Include content based on configuration 68

sphinx.ext.coverage -- Collect doc coverage stats 68

sphinx.ext.todo -- Support for todo items 68

Third-party extensions 69

Where to put your own extensions? 69

Sphinx FAQ 69

How do I... 69

Using Sphinx with... 69

Glossary 70

Changes in Sphinx 71

Release 0.6.4 (Jan 12, 2010) 71

Release 0.6.3 (Sep 03, 2009) 71

Release 0.6.2 (Jun 16, 2009) 72

Release 0.6.1 (Mar 26, 2009) 72

Release 0.6 (Mar 24, 2009) 72

New features added 72

Release 0.5.2 (Mar 24, 2009) 74

Release 0.5.1 (Dec 15, 2008) 75

Release 0.5 (Nov 23, 2008) -- Birthday release! 75

New features added 75

Bugs fixed 77

Release 0.4.3 (Oct 8, 2008) 77

Release 0.4.2 (Jul 29, 2008) 78

Release 0.4.1 (Jul 5, 2008) 78

Release 0.4 (Jun 23, 2008) 78

New features added 78

Bugs fixed 79

Release 0.3 (May 6, 2008) 80

New features added 80

Bugs fixed 80

Release 0.2 (Apr 27, 2008) 80

Incompatible changes 80

New features added 81

Bugs fixed 81

Release 0.1.61950 (Mar 26, 2008) 81

Release 0.1.61945 (Mar 26, 2008) 81

Release 0.1.61843 (Mar 24, 2008) 82

Release 0.1.61798 (Mar 23, 2008) 82

Release 0.1.61611 (Mar 21, 2008) 82

Projects using Sphinx 82

Indices and tables 84

Index 84

Global Module Index 100

Sphinx documentation contents

Introduction
This is the documentation for the Sphinx documentation builder. Sphinx is a tool that translates a set of
reStructuredText source files into various output formats, automatically producing cross-references, indices etc. That
is, if you have a directory containing a bunch of reST-formatted documents (and possibly subdirectories of docs in
there as well), Sphinx can generate a nicely-organized arrangement of HTML files (in some other directory) for easy
browsing and navigation. But from the same source, it can also generate a LaTeX file that you can compile into a
PDF version of the documents.

The focus is on hand-written documentation, rather than auto-generated API docs. Though there is limited support
for that kind of docs as well (which is intended to be freely mixed with hand-written content), if you need pure API
docs have a look at Epydoc, which also understands reST.

Conversion from other systems
This section is intended to collect helpful hints for those wanting to migrate to reStructuredText/Sphinx from other
documentation systems.

• Gerard Flanagan has written a script to convert pure HTML to reST; it can be found at BitBucket.

http://docutils.sf.net/rst.html
http://epydoc.sf.net/
http://bitbucket.org/djerdo/musette/src/tip/musette/html/html2rest.py

• For converting the old Python docs to Sphinx, a converter was written which can be found at the Python SVN
repository. It contains generic code to convert Python-doc-style LaTeX markup to Sphinx reST.

• Marcin Wojdyr has written a script to convert Docbook to reST with Sphinx markup; it is at Google Code.

Prerequisites
Sphinx needs at least Python 2.4 to run. If you like to have source code highlighting support, you must also install
the Pygments library, which you can do via setuptools' easy_install. Sphinx should work with docutils version 0.4 or
some (not broken) SVN trunk snapshot.

Setting up the documentation sources
The root directory of a documentation collection is called the source directory. Normally, this directory also contains
the Sphinx configuration file conf.py, but that file can also live in another directory, the configuration directory.

New in version 0.3: Support for a different configuration directory.

Sphinx comes with a script called sphinx-quickstart that sets up a source directory and creates a default conf.py
from a few questions it asks you. Just run

$ sphinx-quickstart

and answer the questions.

Running a build
A build is started with the sphinx-build script. It is called like this:

$ sphinx-build -b latex sourcedir builddir

where sourcedir is the source directory, and builddir is the directory in which you want to place the built
documentation (it must be an existing directory). The -b option selects a builder; in this example Sphinx will build
LaTeX files.

The sphinx-build script has several more options:

-a
If given, always write all output files. The default is to only write output files for new and changed source files.
(This may not apply to all builders.)

-E
Don't use a saved environment (the structure caching all cross-references), but rebuild it completely. The default
is to only read and parse source files that are new or have changed since the last run.

-t tag
Define the tag tag. This is relevant for only directives that only include their content if this tag is set.
New in version 0.6.

-d path
Since Sphinx has to read and parse all source files before it can write an output file, the parsed source files are
cached as "doctree pickles". Normally, these files are put in a directory called .doctrees under the build
directory; with this option you can select a different cache directory (the doctrees can be shared between all
builders).

-c path
Don't look for the conf.py in the source directory, but use the given configuration directory instead. Note that
various other files and paths given by configuration values are expected to be relative to the configuration
directory, so they will have to be present at this location too.
New in version 0.3.

-C
Don't look for a configuration file; only take options via the -D option.
New in version 0.5.

-D setting=value
Override a configuration value set in the conf.py file. The value must be a string or dictionary value. For the
latter, supply the setting name and key like this: -D latex_elements.docclass=scrartcl.
Changed in version 0.6: The value can now be a dictionary value.

http://svn.python.org/projects/doctools/converter
http://svn.python.org/projects/doctools/converter
http://code.google.com/p/db2rst/
http://pygments.org

-A name=value
Make the name assigned to value in the HTML templates.

-N
Do not do colored output. (On Windows, colored output is disabled in any case.)

-q
Do not output anything on standard output, only write warnings and errors to standard error.

-Q
Do not output anything on standard output, also suppress warnings. Only errors are written to standard error.

-w file
Write warnings (and errors) to the given file, in addition to standard error.

-W
Turn warnings into errors. This means that the build stops at the first warning and sphinx-build exits with exit
status 1.

-P
(Useful for debugging only.) Run the Python debugger, pdb, if an unhandled exception occurs while building.

You can also give one or more filenames on the command line after the source and build directories. Sphinx will
then try to build only these output files (and their dependencies).

Sphinx concepts

Document names
Since the reST source files can have different extensions (some people like .txt, some like .rst -- the extension
can be configured with source_suffix) and different OSes have different path separators, Sphinx abstracts them:
all "document names" are relative to the source directory, the extension is stripped, and path separators are
converted to slashes. All values, parameters and suchlike referring to "documents" expect such a document name.

Examples for document names are index, library/zipfile, or reference/datamodel/types. Note that
there is no leading slash.

The TOC tree
Since reST does not have facilities to interconnect several documents, or split documents into multiple output files,
Sphinx uses a custom directive to add relations between the single files the documentation is made of, as well as
tables of contents. The toctree directive is the central element.

.. toctree::
This directive inserts a "TOC tree" at the current location, using the individual TOCs (including "sub-TOC trees") of
the documents given in the directive body (whose path is relative to the document the directive occurs in). A
numeric maxdepth option may be given to indicate the depth of the tree; by default, all levels are included. 1

Consider this example (taken from the Python docs' library reference index):

.. toctree::
 :maxdepth: 2

 intro
 strings
 datatypes
 numeric
 (many more documents listed here)

This accomplishes two things:

• Tables of contents from all those documents are inserted, with a maximum depth of two, that means one
nested heading. toctree directives in those documents are also taken into account.

• Sphinx knows that the relative order of the documents intro, strings and so forth, and it knows that
they are children of the shown document, the library index. From this information it generates "next chapter",
"previous chapter" and "parent chapter" links.

Document titles in the toctree will be automatically read from the title of the referenced document. If that isn't
what you want, you can specify an explicit title and target using a similar syntax to reST hyperlinks (and Sphinx's

cross-referencing syntax). This looks like:

.. toctree::

 intro
 All about strings <strings>
 datatypes

The second line above will link to the strings document, but will use the title "All about strings" instead of the
title of the strings document.
You can also add external links, by giving an HTTP URL instead of a document name.
If you want to have section numbers even in HTML output, give the toctree a numbered flag option. For example:

.. toctree::
 :numbered:

 foo
 bar

Numbering then starts at the heading of foo. Sub-toctrees are automatically numbered (don't give the numbered
flag to those).
You can use "globbing" in toctree directives, by giving the glob flag option. All entries are then matched against
the list of available documents, and matches are inserted into the list alphabetically. Example:

.. toctree::
 :glob:

 intro*
 recipe/*
 *

This includes first all documents whose names start with intro, then all documents in the recipe folder, then
all remaining documents (except the one containing the directive, of course.) 2

The special entry name self stands for the document containing the toctree directive. This is useful if you want
to generate a "sitemap" from the toctree.
You can also give a "hidden" option to the directive, like this:

.. toctree::
 :hidden:

 doc_1
 doc_2

This will still notify Sphinx of the document hierarchy, but not insert links into the document at the location of the
directive -- this makes sense if you intend to insert these links yourself, in a different style, or in the HTML sidebar.
In the end, all documents in the source directory (or subdirectories) must occur in some toctree directive;
Sphinx will emit a warning if it finds a file that is not included, because that means that this file will not be
reachable through standard navigation. Use unused_docs to explicitly exclude documents from building, and
exclude_trees to exclude whole directories.
The "master document" (selected by master_doc) is the "root" of the TOC tree hierarchy. It can be used as the
documentation's main page, or as a "full table of contents" if you don't give a maxdepth option.
Changed in version 0.3: Added "globbing" option.
Changed in version 0.6: Added "numbered" and "hidden" options as well as external links and support for "self"
references.

Special names
Sphinx reserves some document names for its own use; you should not try to create documents with these names --
it will cause problems.

The special document names (and pages generated for them) are:

• genindex, modindex, search
These are used for the general index, the module index, and the search page, respectively.
The general index is populated with entries from modules, all index-generating description units, and from
index directives.
The module index contains one entry per module directive.
The search page contains a form that uses the generated JSON search index and JavaScript to full-text
search the generated documents for search words; it should work on every major browser that supports
modern JavaScript.

• every name beginning with _
Though only few such names are currently used by Sphinx, you should not create documents or
document-containing directories with such names. (Using _ as a prefix for a custom template directory is
fine.)

1 The maxdepth option does not apply to the LaTeX writer, where the whole table of contents
will always be presented at the begin of the document, and its depth is controlled by the
tocdepth counter, which you can reset in your latex_preamble config value using e.g.
\setcounter{tocdepth}{2}.

2 A note on available globbing syntax: you can use the standard shell constructs *, ?, [...]
and [!...] with the feature that these all don't match slashes. A double star ** can be used
to match any sequence of characters including slashes.

reStructuredText Primer
This section is a brief introduction to reStructuredText (reST) concepts and syntax, intended to provide authors with
enough information to author documents productively. Since reST was designed to be a simple, unobtrusive markup
language, this will not take too long.

See also

The authoritative reStructuredText User Documentation.

Paragraphs
The paragraph is the most basic block in a reST document. Paragraphs are simply chunks of text separated by one
or more blank lines. As in Python, indentation is significant in reST, so all lines of the same paragraph must be
left-aligned to the same level of indentation.

Inline markup
The standard reST inline markup is quite simple: use

• one asterisk: *text* for emphasis (italics),

• two asterisks: **text** for strong emphasis (boldface), and

• backquotes: ``text`` for code samples.

If asterisks or backquotes appear in running text and could be confused with inline markup delimiters, they have to
be escaped with a backslash.

Be aware of some restrictions of this markup:

• it may not be nested,

• content may not start or end with whitespace: * text* is wrong,

• it must be separated from surrounding text by non-word characters. Use a backslash escaped space to work
around that: thisis\ *one*\ word.

These restrictions may be lifted in future versions of the docutils.

reST also allows for custom "interpreted text roles"', which signify that the enclosed text should be interpreted in a
specific way. Sphinx uses this to provide semantic markup and cross-referencing of identifiers, as described in the
appropriate section. The general syntax is :rolename:`content`.

http://docutils.sourceforge.net/rst.html

Lists and Quotes
List markup is natural: just place an asterisk at the start of a paragraph and indent properly. The same goes for
numbered lists; they can also be autonumbered using a # sign:

* This is a bulleted list.
* It has two items, the second
 item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the parent list items by blank lines:

* this is
* a list

 * with a nested list
 * and some subitems

* and here the parent list continues

Definition lists are created as follows:

term (up to a line of text)
 Definition of the term, which must be indented

 and can even consist of multiple paragraphs

next term
 Description.

Paragraphs are quoted by just indenting them more than the surrounding paragraphs.

Source Code
Literal code blocks are introduced by ending a paragraph with the special marker ::. The literal block must be
indented (and, like all paragraphs, separated from the surrounding ones by blank lines):

This is a normal text paragraph. The next paragraph is a code sample::

 It is not processed in any way, except
 that the indentation is removed.

 It can span multiple lines.

This is a normal text paragraph again.

The handling of the :: marker is smart:

• If it occurs as a paragraph of its own, that paragraph is completely left out of the document.

• If it is preceded by whitespace, the marker is removed.

• If it is preceded by non-whitespace, the marker is replaced by a single colon.

That way, the second sentence in the above example's first paragraph would be rendered as "The next paragraph is
a code sample:".

Hyperlinks

External links

Use `Link text <http://target>`_ for inline web links. If the link text should be the web address, you don't
need special markup at all, the parser finds links and mail addresses in ordinary text.

Internal links

Internal linking is done via a special reST role, see the section on specific markup, Cross-referencing arbitrary
locations.

Sections
Section headers are created by underlining (and optionally overlining) the section title with a punctuation character,
at least as long as the text:

=================
This is a heading
=================

Normally, there are no heading levels assigned to certain characters as the structure is determined from the
succession of headings. However, for the Python documentation, this convention is used which you may follow:

• # with overline, for parts

• * with overline, for chapters

• =, for sections

• -, for subsections

• ^, for subsubsections

• ", for paragraphs

Of course, you are free to use your own marker characters (see the reST documentation), and use a deeper nesting
level, but keep in mind that most target formats (HTML, LaTeX) have a limited supported nesting depth.

Explicit Markup
"Explicit markup" is used in reST for most constructs that need special handling, such as footnotes,
specially-highlighted paragraphs, comments, and generic directives.

An explicit markup block begins with a line starting with .. followed by whitespace and is terminated by the next
paragraph at the same level of indentation. (There needs to be a blank line between explicit markup and normal
paragraphs. This may all sound a bit complicated, but it is intuitive enough when you write it.)

Directives
A directive is a generic block of explicit markup. Besides roles, it is one of the extension mechanisms of reST, and
Sphinx makes heavy use of it.

Basically, a directive consists of a name, arguments, options and content. (Keep this terminology in mind, it is used
in the next chapter describing custom directives.) Looking at this example,

.. function:: foo(x)
 foo(y, z)
 :bar: no

 Return a line of text input from the user.

function is the directive name. It is given two arguments here, the remainder of the first line and the second line,
as well as one option bar (as you can see, options are given in the lines immediately following the arguments and
indicated by the colons).

The directive content follows after a blank line and is indented relative to the directive start.

Images
reST supports an image directive, used like so:

.. image:: gnu.png
 (options)

When used within Sphinx, the file name given (here gnu.png) must either be relative to the source file, or absolute
which means that they are relative to the top source directory. For example, the file sketch/spam.rst could refer
to the image images/spam.png as ../images/spam.png or /images/spam.png.

Sphinx will automatically copy image files over to a subdirectory of the output directory on building (e.g. the
_static directory for HTML output.)

Interpretation of image size options (width and height) is as follows: if the size has no unit or the unit is pixels,
the given size will only be respected for output channels that support pixels (i.e. not in LaTeX output). Other units
(like pt for points) will be used for HTML and LaTeX output.

Sphinx extends the standard docutils behavior by allowing an asterisk for the extension:

.. image:: gnu.*

Sphinx then searches for all images matching the provided pattern and determines their type. Each builder then
chooses the best image out of these candidates. For instance, if the file name gnu.* was given and two files
gnu.pdf and gnu.png existed in the source tree, the LaTeX builder would choose the former, while the HTML
builder would prefer the latter.

Changed in version 0.4: Added the support for file names ending in an asterisk.

Changed in version 0.6: Image paths can now be absolute.

Footnotes
For footnotes, use [#name]_ to mark the footnote location, and add the footnote body at the bottom of the
document after a "Footnotes" rubric heading, like so:

Lorem ipsum [#f1]_ dolor sit amet ... [#f2]_

.. rubric:: Footnotes

.. [#f1] Text of the first footnote.

.. [#f2] Text of the second footnote.

You can also explicitly number the footnotes ([1]_) or use auto-numbered footnotes without names ([#]_).

Citations
Standard reST citations are supported, with the additional feature that they are "global", i.e. all citations can be
referenced from all files. Use them like so:

Lorem ipsum [Ref]_ dolor sit amet.

.. [Ref] Book or article reference, URL or whatever.

Citation usage is similar to footnote usage, but with a label that is not numeric or begins with #.

Substitutions
reST supports "substitutions", which are pieces of text and/or markup referred to in the text by |name|. They are
defined like footnotes with explicit markup blocks, like this:

.. |name| replace:: replacement *text*

See the reST reference for substitutions for details.

If you want to use some substitutions for all documents, put them into a separate file and include it into all
documents you want to use them in, using the include directive. Be sure to give the include file a file name
extension differing from that of other source files, to avoid Sphinx finding it as a standalone document.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions

Sphinx defines some default substitutions, see Substitutions.

Comments
Every explicit markup block which isn't a valid markup construct (like the footnotes above) is regarded as a
comment. For example:

.. This is a comment.

You can indent text after a comment start to form multiline comments:

..
 This whole indented block
 is a comment.

 Still in the comment.

Source encoding
Since the easiest way to include special characters like em dashes or copyright signs in reST is to directly write
them as Unicode characters, one has to specify an encoding. Sphinx assumes source files to be encoded in UTF-8
by default; you can change this with the source_encoding config value.

Gotchas
There are some problems one commonly runs into while authoring reST documents:

• Separation of inline markup: As said above, inline markup spans must be separated from the surrounding
text by non-word characters, you have to use a backslash-escaped space to get around that.

• No nested inline markup: Something like *see :func:`foo`* is not possible.

Sphinx Markup Constructs
Sphinx adds a lot of new directives and interpreted text roles to standard reST markup. This section contains the
reference material for these facilities.

Module-specific markup
The markup described in this section is used to provide information about a module being documented. Normally
this markup appears after a title heading; a typical module section might start like this:

:mod:`parrot` -- Dead parrot access
===================================

.. module:: parrot
 :platform: Unix, Windows
 :synopsis: Analyze and reanimate dead parrots.
.. moduleauthor:: Eric Cleese <eric@python.invalid>
.. moduleauthor:: John Idle <john@python.invalid>

The directives you can use for module declarations are:

.. module:: name
This directive marks the beginning of the description of a module (or package submodule, in which case the name
should be fully qualified, including the package name). It does not create content (like e.g. class does).
This directive will also cause an entry in the global module index.
The platform option, if present, is a comma-separated list of the platforms on which the module is available (if it
is available on all platforms, the option should be omitted). The keys are short identifiers; examples that are in use
include "IRIX", "Mac", "Windows", and "Unix". It is important to use a key which has already been used when
applicable.
The synopsis option should consist of one sentence describing the module's purpose -- it is currently only used
in the Global Module Index.

The deprecated option can be given (with no value) to mark a module as deprecated; it will be designated as
such in various locations then.

.. currentmodule:: name
This directive tells Sphinx that the classes, functions etc. documented from here are in the given module (like
module), but it will not create index entries, an entry in the Global Module Index, or a link target for mod. This is
helpful in situations where documentation for things in a module is spread over multiple files or sections -- one
location has the module directive, the others only currentmodule.

.. moduleauthor:: name <email>
The moduleauthor directive, which can appear multiple times, names the authors of the module code, just like
sectionauthor names the author(s) of a piece of documentation. It too only produces output if the
show_authors configuration value is True.

Note

It is important to make the section title of a module-describing file meaningful since that value will be inserted in
the table-of-contents trees in overview files.

Object description units
There are a number of directives used to describe specific features provided by modules. Each directive requires
one or more signatures to provide basic information about what is being described, and the content should be the
description. The basic version makes entries in the general index; if no index entry is desired, you can give the
directive option flag :noindex:. The following example shows all of the features of this directive type:

.. function:: spam(eggs)
 ham(eggs)
 :noindex:

 Spam or ham the foo.

The signatures of object methods or data attributes should always include the type name (.. method::
FileInput.input(...)), even if it is obvious from the context which type they belong to; this is to enable
consistent cross-references. If you describe methods belonging to an abstract protocol, such as "context managers",
include a (pseudo-)type name too to make the index entries more informative.

The directives are:

.. cfunction:: type name(signature)
Describes a C function. The signature should be given as in C, e.g.:

.. cfunction:: PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

This is also used to describe function-like preprocessor macros. The names of the arguments should be given so
they may be used in the description.
Note that you don't have to backslash-escape asterisks in the signature, as it is not parsed by the reST inliner.

.. cmember:: type name
Describes a C struct member. Example signature:

.. cmember:: PyObject* PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how the value should be interpreted, and
whether the value can be changed. References to structure members in text should use the member role.

.. cmacro:: name
Describes a "simple" C macro. Simple macros are macros which are used for code expansion, but which do not
take arguments so cannot be described as functions. This is not to be used for simple constant definitions.
Examples of its use in the Python documentation include PyObject_HEAD and Py_BEGIN_ALLOW_THREADS.

.. ctype:: name
Describes a C type. The signature should just be the type name.

.. cvar:: type name
Describes a global C variable. The signature should include the type, such as:

.. cvar:: PyObject* PyClass_Type

.. data:: name
Describes global data in a module, including both variables and values used as "defined constants." Class and
object attributes are not documented using this environment.

.. exception:: name
Describes an exception class. The signature can, but need not include parentheses with constructor arguments.

.. function:: name(signature)
Describes a module-level function. The signature should include the parameters, enclosing optional parameters in
brackets. Default values can be given if it enhances clarity; see Signatures. For example:

.. function:: Timer.repeat([repeat=3[, number=1000000]])

Object methods are not documented using this directive. Bound object methods placed in the module namespace
as part of the public interface of the module are documented using this, as they are equivalent to normal functions
for most purposes.
The description should include information about the parameters required and how they are used (especially
whether mutable objects passed as parameters are modified), side effects, and possible exceptions. A small
example may be provided.

.. class:: name[(signature)]
Describes a class. The signature can include parentheses with parameters which will be shown as the constructor
arguments. See also Signatures.
Methods and attributes belonging to the class should be placed in this directive's body. If they are placed outside,
the supplied name should contain the class name so that cross-references still work. Example:

.. class:: Foo
 .. method:: quux()

-- or --

.. class:: Bar

.. method:: Bar.quux()

The first way is the preferred one.
New in version 0.4: The standard reST directive class is now provided by Sphinx under the name cssclass.

.. attribute:: name
Describes an object data attribute. The description should include information about the type of the data to be
expected and whether it may be changed directly.

.. method:: name(signature)
Describes an object method. The parameters should not include the self parameter. The description should
include similar information to that described for function. See also Signatures.

.. staticmethod:: name(signature)
Like method, but indicates that the method is a static method.
New in version 0.4.

.. classmethod:: name(signature)
Like method, but indicates that the method is a class method.
New in version 0.6.

Signatures

Signatures of functions, methods and class constructors can be given like they would be written in Python, with the
exception that optional parameters can be indicated by brackets:

.. function:: compile(source[, filename[, symbol]])

It is customary to put the opening bracket before the comma. In addition to this "nested" bracket style, a "flat" style
can also be used, due to the fact that most optional parameters can be given independently:

.. function:: compile(source[, filename, symbol])

Default values for optional arguments can be given (but if they contain commas, they will confuse the signature
parser). Python 3-style argument annotations can also be given as well as return type annotations:

.. function:: compile(source : string[, filename, symbol]) -> ast object

Info field lists

New in version 0.4.

Inside description unit directives, reST field lists with these fields are recognized and formatted nicely:

• param, parameter, arg, argument, key, keyword: Description of a parameter.

• type: Type of a parameter.

• raises, raise, except, exception: That (and when) a specific exception is raised.

• var, ivar, cvar: Description of a variable.

• returns, return: Description of the return value.

• rtype: Return type.

The field names must consist of one of these keywords and an argument (except for returns and rtype, which
do not need an argument). This is best explained by an example:

.. function:: format_exception(etype, value, tb[, limit=None])

 Format the exception with a traceback.

 :param etype: exception type
 :param value: exception value
 :param tb: traceback object
 :param limit: maximum number of stack frames to show
 :type limit: integer or None
 :rtype: list of strings

This will render like this:

format_exception (etype, value, tb[, limit=None])
Format the exception with a traceback.

Parameters: • etype -- exception type

• value -- exception value

• tb -- traceback object

• limit (integer or None) -- maximum number of stack frames to show

Return type: list of strings

Command-line program markup

There is a set of directives allowing documenting command-line programs:

.. cmdoption:: name args, name args, ...
Describes a command line option or switch. Option argument names should be enclosed in angle brackets.
Example:

.. cmdoption:: -m <module>, --module <module>

 Run a module as a script.

The directive will create a cross-reference target named after the first option, referencable by option (in the
example case, you'd use something like :option:`-m`).

.. envvar:: name
Describes an environment variable that the documented code or program uses or defines.

.. program:: name
Like currentmodule, this directive produces no output. Instead, it serves to notify Sphinx that all following
cmdoption directives document options for the program called name.
If you use program, you have to qualify the references in your option roles by the program name, so if you
have the following situation

.. program:: rm

.. cmdoption:: -r

 Work recursively.

.. program:: svn

.. cmdoption:: -r revision

 Specify the revision to work upon.

then :option:`rm -r` would refer to the first option, while :option:`svn -r` would refer to the second
one.
The program name may contain spaces (in case you want to document subcommands like svn add and svn
commit separately).
New in version 0.5.

Custom description units

There is also a generic version of these directives:

.. describe:: text
This directive produces the same formatting as the specific ones explained above but does not create index
entries or cross-referencing targets. It is used, for example, to describe the directives in this document. Example:

.. describe:: opcode

 Describes a Python bytecode instruction.

Extensions may add more directives like that, using the add_description_unit() method.

Paragraph-level markup
These directives create short paragraphs and can be used inside information units as well as normal text:

.. note::
An especially important bit of information about an API that a user should be aware of when using whatever bit of
API the note pertains to. The content of the directive should be written in complete sentences and include all
appropriate punctuation.
Example:

.. note::

 This function is not suitable for sending spam e-mails.

.. warning::
An important bit of information about an API that a user should be very aware of when using whatever bit of API
the warning pertains to. The content of the directive should be written in complete sentences and include all
appropriate punctuation. This differs from note in that it is recommended over note for information regarding
security.

.. versionadded:: version

This directive documents the version of the project which added the described feature to the library or C API.
When this applies to an entire module, it should be placed at the top of the module section before any prose.
The first argument must be given and is the version in question; you can add a second argument consisting of a
brief explanation of the change.
Example:

.. versionadded:: 2.5
 The `spam` parameter.

Note that there must be no blank line between the directive head and the explanation; this is to make these blocks
visually continuous in the markup.

.. versionchanged:: version
Similar to versionadded, but describes when and what changed in the named feature in some way (new
parameters, changed side effects, etc.).

.. seealso::
Many sections include a list of references to module documentation or external documents. These lists are
created using the seealso directive.
The seealso directive is typically placed in a section just before any sub-sections. For the HTML output, it is
shown boxed off from the main flow of the text.
The content of the seealso directive should be a reST definition list. Example:

.. seealso::

 Module :mod:`zipfile`
 Documentation of the :mod:`zipfile` standard module.

 `GNU tar manual, Basic Tar Format <http://link>`_
 Documentation for tar archive files, including GNU tar extensions.

There's also a "short form" allowed that looks like this:

.. seealso:: modules :mod:`zipfile`, :mod:`tarfile`

New in version 0.5: The short form.

.. rubric:: title
This directive creates a paragraph heading that is not used to create a table of contents node.

Note
If the title of the rubric is "Footnotes" (or the selected language's equivalent), this rubric is ignored by the
LaTeX writer, since it is assumed to only contain footnote definitions and therefore would create an empty
heading.

.. centered::
This directive creates a centered boldfaced line of text. Use it as follows:

.. centered:: LICENSE AGREEMENT

.. hlist::
This directive must contain a bullet list. It will transform it into a more compact list by either distributing more than
one item horizontally, or reducing spacing between items, depending on the builder.
For builders that support the horizontal distribution, there is a columns option that specifies the number of
columns; it defaults to 2. Example:

.. hlist::
 :columns: 3

 * A list of

 * short items
 * that should be
 * displayed
 * horizontally

New in version 0.6.

Table-of-contents markup
The toctree directive, which generates tables of contents of subdocuments, is described in "Sphinx concepts".

For local tables of contents, use the standard reST contents directive.

Index-generating markup
Sphinx automatically creates index entries from all information units (like functions, classes or attributes) like
discussed before.

However, there is also an explicit directive available, to make the index more comprehensive and enable index
entries in documents where information is not mainly contained in information units, such as the language reference.

.. index:: <entries>
This directive contains one or more index entries. Each entry consists of a type and a value, separated by a colon.
For example:

.. index::
 single: execution; context
 module: __main__
 module: sys
 triple: module; search; path

The execution context

...

This directive contains five entries, which will be converted to entries in the generated index which link to the exact
location of the index statement (or, in case of offline media, the corresponding page number).
Since index directives generate cross-reference targets at their location in the source, it makes sense to put them
before the thing they refer to -- e.g. a heading, as in the example above.
The possible entry types are:

single
Creates a single index entry. Can be made a subentry by separating the subentry text with a semicolon (this
notation is also used below to describe what entries are created).

pair
pair: loop; statement is a shortcut that creates two index entries, namely loop; statement and
statement; loop.

triple
Likewise, triple: module; search; path is a shortcut that creates three index entries, which are
module; search path, search; path, module and path; module search.

module, keyword, operator, object, exception, statement, builtin
These all create two index entries. For example, module: hashlib creates the entries module; hashlib
and hashlib; module.

For index directives containing only "single" entries, there is a shorthand notation:

.. index:: BNF, grammar, syntax, notation

This creates four index entries.

Glossary

.. glossary::

This directive must contain a reST definition list with terms and definitions. The definitions will then be
referencable with the term role. Example:

.. glossary::

 environment
 A structure where information about all documents under the root is
 saved, and used for cross-referencing. The environment is pickled
 after the parsing stage, so that successive runs only need to read
 and parse new and changed documents.

 source directory
 The directory which, including its subdirectories, contains all
 source files for one Sphinx project.

New in version 0.6: You can now give the glossary directive a :sorted: flag that will automatically sort the
entries alphabetically.

Grammar production displays
Special markup is available for displaying the productions of a formal grammar. The markup is simple and does not
attempt to model all aspects of BNF (or any derived forms), but provides enough to allow context-free grammars to
be displayed in a way that causes uses of a symbol to be rendered as hyperlinks to the definition of the symbol.
There is this directive:

.. productionlist::
This directive is used to enclose a group of productions. Each production is given on a single line and consists of
a name, separated by a colon from the following definition. If the definition spans multiple lines, each continuation
line must begin with a colon placed at the same column as in the first line.
Blank lines are not allowed within productionlist directive arguments.
The definition can contain token names which are marked as interpreted text (e.g. sum ::= `integer` "+"
`integer`) -- this generates cross-references to the productions of these tokens.
Note that no further reST parsing is done in the production, so that you don't have to escape * or | characters.

The following is an example taken from the Python Reference Manual:

.. productionlist::
 try_stmt: try1_stmt | try2_stmt
 try1_stmt: "try" ":" `suite`
 : ("except" [`expression` ["," `target`]] ":" `suite`)+
 : ["else" ":" `suite`]
 : ["finally" ":" `suite`]
 try2_stmt: "try" ":" `suite`
 : "finally" ":" `suite`

Showing code examples
Examples of Python source code or interactive sessions are represented using standard reST literal blocks. They
are started by a :: at the end of the preceding paragraph and delimited by indentation.

Representing an interactive session requires including the prompts and output along with the Python code. No
special markup is required for interactive sessions. After the last line of input or output presented, there should not
be an "unused" primary prompt; this is an example of what not to do:

>>> 1 + 1
2
>>>

Syntax highlighting is done with Pygments (if it's installed) and handled in a smart way:

• There is a "highlighting language" for each source file. Per default, this is 'python' as the majority of files
will have to highlight Python snippets, but the doc-wide default can be set with the highlight_language
config value.

http://pygments.org

• Within Python highlighting mode, interactive sessions are recognized automatically and highlighted
appropriately. Normal Python code is only highlighted if it is parseable (so you can use Python as the default,
but interspersed snippets of shell commands or other code blocks will not be highlighted as Python).

• The highlighting language can be changed using the highlight directive, used as follows:

.. highlight:: c

This language is used until the next highlight directive is encountered.

• For documents that have to show snippets in different languages, there's also a code-block directive that is
given the highlighting language directly:

.. code-block:: ruby

 Some Ruby code.

The directive's alias name sourcecode works as well.

• The valid values for the highlighting language are:

• none (no highlighting)

• python (the default when highlight_language isn't set)

• guess (let Pygments guess the lexer based on contents, only works with certain well-recognizable
languages)

• rest

• c

• ... and any other lexer name that Pygments supports.

• If highlighting with the selected language fails, the block is not highlighted in any way.

Line numbers

If installed, Pygments can generate line numbers for code blocks. For automatically-highlighted blocks (those started
by ::), line numbers must be switched on in a highlight directive, with the linenothreshold option:

.. highlight:: python
 :linenothreshold: 5

This will produce line numbers for all code blocks longer than five lines.

For code-block blocks, a linenos flag option can be given to switch on line numbers for the individual block:

.. code-block:: ruby
 :linenos:

 Some more Ruby code.

Includes

.. literalinclude:: filename
Longer displays of verbatim text may be included by storing the example text in an external file containing only
plain text. The file may be included using the literalinclude directive. 3 For example, to include the Python
source file example.py, use:

.. literalinclude:: example.py

The file name is usually relative to the current file's path. However, if it is absolute (starting with /), it is relative to
the top source directory.
The directive also supports the linenos flag option to switch on line numbers, and a language option to select
a language different from the current file's standard language. Example with options:

.. literalinclude:: example.rb
 :language: ruby
 :linenos:

Include files are assumed to be encoded in the source_encoding. If the file has a different encoding, you can
specify it with the encoding option:

.. literalinclude:: example.py
 :encoding: latin-1

The directive also supports including only parts of the file. If it is a Python module, you can select a class, function
or method to include using the pyobject option:

.. literalinclude:: example.py
 :pyobject: Timer.start

This would only include the code lines belonging to the start() method in the Timer class within the file.
Alternately, you can specify exactly which lines to include by giving a lines option:

.. literalinclude:: example.py
 :lines: 1,3,5-10,20-

This includes the lines 1, 3, 5 to 10 and lines 20 to the last line.
Another way to control which part of the file is included is to use the start-after and end-before options
(or only one of them). If start-after is given as a string option, only lines that follow the first line containing
that string are included. If end-before is given as a string option, only lines that precede the first lines
containing that string are included.
New in version 0.4.3: The encoding option.
New in version 0.6: The pyobject, lines, start-after and end-before options, as well as support for
absolute filenames.

3 There is a standard .. include directive, but it raises errors if the file is not found. This one
only emits a warning.

Inline markup
Sphinx uses interpreted text roles to insert semantic markup into documents. They are written as
:rolename:`content`.

Note

The default role (`content`) has no special meaning by default. You are free to use it for anything you like, e.g.
variable names; use the default_role config value to set it to a known role.

Cross-referencing syntax

Cross-references are generated by many semantic interpreted text roles. Basically, you only need to write
:role:`target`, and a link will be created to the item named target of the type indicated by role. The links's text
will be the same as target.

There are some additional facilities, however, that make cross-referencing roles more versatile:

• You may supply an explicit title and reference target, like in reST direct hyperlinks: :role:`title
<target>` will refer to target, but the link text will be title.

• If you prefix the content with !, no reference/hyperlink will be created.

• For the Python object roles, if you prefix the content with ~, the link text will only be the last component of the
target. For example, :meth:`~Queue.Queue.get` will refer to Queue.Queue.get but only display get
as the link text.
In HTML output, the link's title attribute (that is e.g. shown as a tool-tip on mouse-hover) will always be the
full target name.

Cross-referencing Python objects

The following roles refer to objects in modules and are possibly hyperlinked if a matching identifier is found:

:mod:
The name of a module; a dotted name may be used. This should also be used for package names.

:func:
The name of a Python function; dotted names may be used. The role text needs not include trailing parentheses
to enhance readability; they will be added automatically by Sphinx if the add_function_parentheses config
value is true (the default).

:data:
The name of a module-level variable.

:const:
The name of a "defined" constant. This may be a C-language #define or a Python variable that is not intended
to be changed.

:class:
A class name; a dotted name may be used.

:meth:
The name of a method of an object. The role text should include the type name and the method name; if it occurs
within the description of a type, the type name can be omitted. A dotted name may be used.

:attr:
The name of a data attribute of an object.

:exc:
The name of an exception. A dotted name may be used.

:obj:
The name of an object of unspecified type. Useful e.g. as the default_role.
New in version 0.4.

The name enclosed in this markup can include a module name and/or a class name. For example,
:func:`filter` could refer to a function named filter in the current module, or the built-in function of that
name. In contrast, :func:`foo.filter` clearly refers to the filter function in the foo module.

Normally, names in these roles are searched first without any further qualification, then with the current module
name prepended, then with the current module and class name (if any) prepended. If you prefix the name with a dot,
this order is reversed. For example, in the documentation of Python's codecs module, :func:`open` always
refers to the built-in function, while :func:`.open` refers to codecs.open().

A similar heuristic is used to determine whether the name is an attribute of the currently documented class.

Cross-referencing C constructs

The following roles create cross-references to C-language constructs if they are defined in the documentation:

:cdata:
The name of a C-language variable.

:cfunc:
The name of a C-language function. Should include trailing parentheses.

:cmacro:
The name of a "simple" C macro, as defined above.

:ctype:
The name of a C-language type.

Cross-referencing other items of interest

The following roles do possibly create a cross-reference, but do not refer to objects:

:envvar:
An environment variable. Index entries are generated. Also generates a link to the matching envvar directive, if
it exists.

:token:
The name of a grammar token (used to create links between productionlist directives).

:keyword:
The name of a keyword in Python. This creates a link to a reference label with that name, if it exists.

:option:
A command-line option to an executable program. The leading hyphen(s) must be included. This generates a link
to a cmdoption directive, if it exists.

The following role creates a cross-reference to the term in the glossary:

:term:
Reference to a term in the glossary. The glossary is created using the glossary directive containing a definition
list with terms and definitions. It does not have to be in the same file as the term markup, for example the Python
docs have one global glossary in the glossary.rst file.
If you use a term that's not explained in a glossary, you'll get a warning during build.

Cross-referencing arbitrary locations

To support cross-referencing to arbitrary locations in any document, the standard reST labels are used. For this to
work label names must be unique throughout the entire documentation. There are two ways in which you can refer
to labels:

• If you place a label directly before a section title, you can reference to it with :ref:`label-name`. Example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

The :ref: role would then generate a link to the section, with the link title being "Section to cross-reference".
This works just as well when section and reference are in different source files.
Automatic labels also work with figures: given

.. _my-figure:

.. figure:: whatever

 Figure caption

a reference :ref:`my-figure` would insert a reference to the figure with link text "Figure caption".

• Labels that aren't placed before a section title can still be referenced to, but you must give the link an explicit
title, using this syntax: :ref:`Link title <label-name>`.

Using ref is advised over standard reStructuredText links to sections (like `Section title`_) because it works
across files, when section headings are changed, and for all builders that support cross-references.

Cross-referencing documents

New in version 0.6.

There is also a way to directly link to documents:

:doc:
Link to the specified document; the document name can be specified in absolute or relative fashion. For example,
if the reference :doc:`parrot` occurs in the document sketches/index, then the link refers to
sketches/parrot. If the reference is :doc:`/people` or :doc:`../people`, the link refers to people.
If no explicit link text is given (like usual: :doc:`Monty Python members </people>`), the link caption will
be the title of the given document.

Referencing downloadable files

New in version 0.6.

:download:
This role lets you link to files within your source tree that are not reST documents that can be viewed, but files that
can be downloaded.
When you use this role, the referenced file is automatically marked for inclusion in the output when building
(obviously, for HTML output only). All downloadable files are put into the _downloads subdirectory of the output
directory; duplicate filenames are handled.
An example:

See :download:`this example script <../example.py>`.

The given filename is usually relative to the directory the current source file is contained in, but if it absolute
(starting with /), it is taken as relative to the top source directory.
The example.py file will be copied to the output directory, and a suitable link generated to it.

Other semantic markup

The following roles don't do anything special except formatting the text in a different style:

:abbr:
An abbreviation. If the role content contains a parenthesized explanation, it will be treated specially: it will be
shown in a tool-tip in HTML, and output only once in LaTeX.
Example: :abbr:`LIFO (last-in, first-out)`.
New in version 0.6.

:command:
The name of an OS-level command, such as rm.

:dfn:
Mark the defining instance of a term in the text. (No index entries are generated.)

:file:
The name of a file or directory. Within the contents, you can use curly braces to indicate a "variable" part, for
example:

... is installed in :file:`/usr/lib/python2.{x}/site-packages` ...

In the built documentation, the x will be displayed differently to indicate that it is to be replaced by the Python
minor version.

:guilabel:
Labels presented as part of an interactive user interface should be marked using guilabel. This includes labels
from text-based interfaces such as those created using curses or other text-based libraries. Any label used in
the interface should be marked with this role, including button labels, window titles, field names, menu and menu
selection names, and even values in selection lists.

:kbd:
Mark a sequence of keystrokes. What form the key sequence takes may depend on platform- or
application-specific conventions. When there are no relevant conventions, the names of modifier keys should be
spelled out, to improve accessibility for new users and non-native speakers. For example, an xemacs key
sequence may be marked like :kbd:`C-x C-f`, but without reference to a specific application or platform, the
same sequence should be marked as :kbd:`Control-x Control-f`.

:mailheader:
The name of an RFC 822-style mail header. This markup does not imply that the header is being used in an email
message, but can be used to refer to any header of the same "style." This is also used for headers defined by the
various MIME specifications. The header name should be entered in the same way it would normally be found in
practice, with the camel-casing conventions being preferred where there is more than one common usage. For
example: :mailheader:`Content-Type`.

:makevar:

The name of a make variable.

:manpage:
A reference to a Unix manual page including the section, e.g. :manpage:`ls(1)`.

:menuselection:
Menu selections should be marked using the menuselection role. This is used to mark a complete sequence
of menu selections, including selecting submenus and choosing a specific operation, or any subsequence of such
a sequence. The names of individual selections should be separated by -->.
For example, to mark the selection "Start > Programs", use this markup:

:menuselection:`Start --> Programs`

When including a selection that includes some trailing indicator, such as the ellipsis some operating systems use
to indicate that the command opens a dialog, the indicator should be omitted from the selection name.

:mimetype:
The name of a MIME type, or a component of a MIME type (the major or minor portion, taken alone).

:newsgroup:
The name of a Usenet newsgroup.

:program:
The name of an executable program. This may differ from the file name for the executable for some platforms. In
particular, the .exe (or other) extension should be omitted for Windows programs.

:regexp:
A regular expression. Quotes should not be included.

:samp:
A piece of literal text, such as code. Within the contents, you can use curly braces to indicate a "variable" part, as
in :file:.
If you don't need the "variable part" indication, use the standard ``code`` instead.

The following roles generate external links:

:pep:
A reference to a Python Enhancement Proposal. This generates appropriate index entries. The text "PEP number"
is generated; in the HTML output, this text is a hyperlink to an online copy of the specified PEP.

:rfc:
A reference to an Internet Request for Comments. This generates appropriate index entries. The text "RFC
number" is generated; in the HTML output, this text is a hyperlink to an online copy of the specified RFC.

Note that there are no special roles for including hyperlinks as you can use the standard reST markup for that
purpose.

Substitutions

The documentation system provides three substitutions that are defined by default. They are set in the build
configuration file.

|release|
Replaced by the project release the documentation refers to. This is meant to be the full version string including
alpha/beta/release candidate tags, e.g. 2.5.2b3. Set by release.

|version|
Replaced by the project version the documentation refers to. This is meant to consist only of the major and minor
version parts, e.g. 2.5, even for version 2.5.1. Set by version.

|today|
Replaced by either today's date (the date on which the document is read), or the date set in the build configuration
file. Normally has the format April 14, 2007. Set by today_fmt and today.

Miscellaneous markup

File-wide metadata

reST has the concept of "field lists"; these are a sequence of fields marked up like this:

:Field name: Field content

A field list at the very top of a file is parsed as the "docinfo", which in normal documents can be used to record the
author, date of publication and other metadata. In Sphinx, the docinfo is used as metadata, too, but not displayed in
the output.

At the moment, these metadata fields are recognized:

tocdepth
The maximum depth for a table of contents of this file.
New in version 0.4.

nocomments
If set, the web application won't display a comment form for a page generated from this source file.

Meta-information markup

.. sectionauthor::
Identifies the author of the current section. The argument should include the author's name such that it can be
used for presentation and email address. The domain name portion of the address should be lower case.
Example:

.. sectionauthor:: Guido van Rossum <guido@python.org>

By default, this markup isn't reflected in the output in any way (it helps keep track of contributions), but you can set
the configuration value show_authors to True to make them produce a paragraph in the output.

Including content based on tags

.. only:: <expression>
Include the content of the directive only if the expression is true. The expression should consist of tags, like this:

.. only:: html and draft

Undefined tags are false, defined tags (via the -t command-line option or within conf.py) are true. Boolean
expressions, also using parentheses (like html and (latex or draft) are supported.
The format of the current builder (html, latex or text) is always set as a tag.
New in version 0.6.

Tables

Use standard reStructuredText tables. They work fine in HTML output, however there are some gotchas when using
tables in LaTeX: the column width is hard to determine correctly automatically. For this reason, the following
directive exists:

.. tabularcolumns:: column spec
This directive gives a "column spec" for the next table occurring in the source file. The spec is the second
argument to the LaTeX tabulary package's environment (which Sphinx uses to translate tables). It can have
values like

|l|l|l|

which means three left-adjusted, nonbreaking columns. For columns with longer text that should automatically be
broken, use either the standard p{width} construct, or tabulary's automatic specifiers:

L ragged-left column with automatic width

R ragged-right column with automatic width

C centered column with automatic width

J justified column with automatic width

The automatic width is determined by rendering the content in the table, and scaling them according to their share
of the total width.
By default, Sphinx uses a table layout with L for every column.
New in version 0.3.

Warning

Tables that contain literal blocks cannot be set with tabulary. They are therefore set with the standard LaTeX
tabular environment. Also, the verbatim environment used for literal blocks only works in p{width} columns,
which means that by default, Sphinx generates such column specs for such tables. Use the tabularcolumns
directive to get finer control over such tables.

Available builders

These are the built-in Sphinx builders. More builders can be added by extensions.

The builder's "name" must be given to the -b command-line option of sphinx-build to select a builder.

class sphinx.builders.html.StandaloneHTMLBuilder
This is the standard HTML builder. Its output is a directory with HTML files, complete with style sheets and
optionally the reST sources. There are quite a few configuration values that customize the output of this builder,
see the chapter Options for HTML output for details.
Its name is html.

class sphinx.builders.html.DirectoryHTMLBuilder
This is a subclass of the standard HTML builder. Its output is a directory with HTML files, where each file is called
index.html and placed in a subdirectory named like its page name. For example, the document
markup/rest.rst will not result in an output file markup/rest.html, but markup/rest/index.html.
When generating links between pages, the index.html is omitted, so that the URL would look like
markup/rest/.
Its name is dirhtml.
New in version 0.6.

class sphinx.builders.html.HTMLHelpBuilder
This builder produces the same output as the standalone HTML builder, but also generates HTML Help support
files that allow the Microsoft HTML Help Workshop to compile them into a CHM file.
Its name is htmlhelp.

class sphinx.builders.latex.LaTeXBuilder
This builder produces a bunch of LaTeX files in the output directory. You have to specify which documents are to
be included in which LaTeX files via the latex_documents configuration value. There are a few configuration
values that customize the output of this builder, see the chapter Options for LaTeX output for details.

Note
The produced LaTeX file uses several LaTeX packages that may not be present in a "minimal" TeX
distribution installation. For TeXLive, the following packages need to be installed:

• latex-recommended

• latex-extra

• fonts-recommended

Its name is latex.

Note that a direct PDF builder using ReportLab is available in rst2pdf version 0.12 or greater. You need to add
'rst2pdf.pdfbuilder' to your extensions to enable it, its name is pdf.

class sphinx.builders.text.TextBuilder

http://rst2pdf.googlecode.com

This builder produces a text file for each reST file -- this is almost the same as the reST source, but with much of
the markup stripped for better readability.
Its name is text.
New in version 0.4.

class sphinx.builders.html.SerializingHTMLBuilder
This builder uses a module that implements the Python serialization API (pickle, simplejson, phpserialize, and
others) to dump the generated HTML documentation. The pickle builder is a subclass of it.
A concreate subclass of this builder serializing to the PHP serialization format could look like this:

import phpserialize

class PHPSerializedBuilder(SerializingHTMLBuilder):
 name = 'phpserialized'
 implementation = phpserialize
 out_suffix = '.file.phpdump'
 globalcontext_filename = 'globalcontext.phpdump'
 searchindex_filename = 'searchindex.phpdump'

implementation
A module that implements dump(), load(), dumps() and loads() functions that conform to the functions with the
same names from the pickle module. Known modules implementing this interface are simplejson (or json in
Python 2.6), phpserialize, plistlib, and others.

out_suffix
The suffix for all regular files.

globalcontext_filename
The filename for the file that contains the "global context". This is a dict with some general configuration values
such as the name of the project.

searchindex_filename
The filename for the search index Sphinx generates.

See Serialization builder details for details about the output format.
New in version 0.5.

class sphinx.builders.html.PickleHTMLBuilder
This builder produces a directory with pickle files containing mostly HTML fragments and TOC information, for use
of a web application (or custom postprocessing tool) that doesn't use the standard HTML templates.
See Serialization builder details for details about the output format.
Its name is pickle. (The old name web still works as well.)
The file suffix is .fpickle. The global context is called globalcontext.pickle, the search index
searchindex.pickle.

class sphinx.builders.html.JSONHTMLBuilder
This builder produces a directory with JSON files containing mostly HTML fragments and TOC information, for use
of a web application (or custom postprocessing tool) that doesn't use the standard HTML templates.
See Serialization builder details for details about the output format.
Its name is json.
The file suffix is .fjson. The global context is called globalcontext.json, the search index
searchindex.json.
New in version 0.5.

class sphinx.builders.changes.ChangesBuilder
This builder produces an HTML overview of all versionadded, versionchanged and deprecated directives
for the current version. This is useful to generate a ChangeLog file, for example.
Its name is changes.

class sphinx.builders.linkcheck.CheckExternalLinksBuilder
This builder scans all documents for external links, tries to open them with urllib2, and writes an overview
which ones are broken and redirected to standard output and to output.txt in the output directory.
Its name is linkcheck.

http://pypi.python.org/pypi/phpserialize

Built-in Sphinx extensions that offer more builders are:

• doctest

• coverage

Serialization builder details
All serialization builders outputs one file per source file and a few special files. They also copy the reST source files
in the directory _sources under the output directory.

The PickleHTMLBuilder is a builtin subclass that implements the pickle serialization interface.

The files per source file have the extensions of out_suffix, and are arranged in directories just as the source files
are. They unserialize to a dictionary (or dictionary like structure) with these keys:

body
The HTML "body" (that is, the HTML rendering of the source file), as rendered by the HTML translator.

title
The title of the document, as HTML (may contain markup).

toc
The table of contents for the file, rendered as an HTML .

display_toc
A boolean that is True if the toc contains more than one entry.

current_page_name
The document name of the current file.

parents, prev and next
Information about related chapters in the TOC tree. Each relation is a dictionary with the keys link (HREF for
the relation) and title (title of the related document, as HTML). parents is a list of relations, while prev and
next are a single relation.

sourcename
The name of the source file under _sources.

The special files are located in the root output directory. They are:

SerializingHTMLBuilder.globalcontext_filename
A pickled dict with these keys:

project, copyright, release, version
The same values as given in the configuration file.

style, use_modindex
html_style and html_use_modindex, respectively.

last_updated
Date of last build.

builder
Name of the used builder, in the case of pickles this is always 'pickle'.

titles
A dictionary of all documents' titles, as HTML strings.

SerializingHTMLBuilder.searchindex_filename
An index that can be used for searching the documentation. It is a pickled list with these entries:

• A list of indexed docnames.

• A list of document titles, as HTML strings, in the same order as the first list.

• A dict mapping word roots (processed by an English-language stemmer) to a list of integers, which are
indices into the first list.

environment.pickle
The build environment. This is always a pickle file, independent of the builder and a copy of the environment that
was used when the builder was started. (XXX: document common members)
Unlike the other pickle files this pickle file requires that the sphinx module is available on unpickling.

The build configuration file

The configuration directory must contain a file named conf.py. This file (containing Python code) is called the
"build configuration file" and contains all configuration needed to customize Sphinx input and output behavior.

The configuration file is executed as Python code at build time (using execfile(), and with the current directory
set to its containing directory), and therefore can execute arbitrarily complex code. Sphinx then reads simple names
from the file's namespace as its configuration.

Important points to note:

• If not otherwise documented, values must be strings, and their default is the empty string.

• The term "fully-qualified name" refers to a string that names an importable Python object inside a module; for
example, the FQN "sphinx.builders.Builder" means the Builder class in the sphinx.builders
module.

• Remember that document names use / as the path separator and don't contain the file name extension.

• Since conf.py is read as a Python file, the usual rules apply for encodings and Unicode support: declare the
encoding using an encoding cookie (a comment like # -*- coding: utf-8 -*-) and use Unicode string
literals when you include non-ASCII characters in configuration values.

• The contents of the config namespace are pickled (so that Sphinx can find out when configuration changes),
so it may not contain unpickleable values -- delete them from the namespace with del if appropriate. Modules
are removed automatically, so you don't need to del your imports after use.

• There is a special object named tags available in the config file. It can be used to query and change the tags
(see Including content based on tags). Use tags.has('tag') to query, tags.add('tag') and
tags.remove('tag') to change.

General configuration

extensions
A list of strings that are module names of Sphinx extensions. These can be extensions coming with Sphinx
(named sphinx.ext.*) or custom ones.
Note that you can extend sys.path within the conf file if your extensions live in another directory -- but make
sure you use absolute paths. If your extension path is relative to the configuration directory, use
os.path.abspath() like so:

import sys, os

sys.path.append(os.path.abspath('sphinxext'))

extensions = ['extname']

That way, you can load an extension called extname from the subdirectory sphinxext.
The configuration file itself can be an extension; for that, you only need to provide a setup() function in it.

source_suffix
The file name extension of source files. Only files with this suffix will be read as sources. Default is '.rst'.

source_encoding
The encoding of all reST source files. The recommended encoding, and the default value, is 'utf-8-sig'.
New in version 0.5: Previously, Sphinx accepted only UTF-8 encoded sources.

master_doc
The document name of the "master" document, that is, the document that contains the root toctree directive.
Default is 'contents'.

unused_docs
A list of document names that are present, but not currently included in the toctree. Use this setting to suppress
the warning that is normally emitted in that case.

exclude_trees
A list of directory paths, relative to the source directory, that are to be recursively excluded from the search for
source files, that is, their subdirectories won't be searched too. The default is [].

New in version 0.4.

exclude_dirnames
A list of directory names that are to be excluded from any recursive operation Sphinx performs (e.g. searching for
source files or copying static files). This is useful, for example, to exclude version-control-specific directories like
'CVS'. The default is [].
New in version 0.5.

exclude_dirs
A list of directory names, relative to the source directory, that are to be excluded from the search for source files.
Deprecated since version 0.5: This does not take subdirs of the excluded directories into account. Use
exclude_trees or exclude_dirnames, which match the expectations.

locale_dirs
New in version 0.5.
Directories in which to search for additional Sphinx message catalogs (see language), relative to the source
directory. The directories on this path are searched by the standard gettext module for a domain of sphinx;
so if you add the directory ./locale to this settting, the message catalogs must be in
./locale/language/LC_MESSAGES/sphinx.mo.
The default is [].

templates_path
A list of paths that contain extra templates (or templates that overwrite builtin/theme-specific templates). Relative
paths are taken as relative to the configuration directory.

template_bridge
A string with the fully-qualified name of a callable (or simply a class) that returns an instance of
TemplateBridge. This instance is then used to render HTML documents, and possibly the output of other
builders (currently the changes builder). (Note that the template bridge must be made theme-aware if HTML
themes are to be used.)

rst_epilog
A string of reStructuredText that will be included at the end of every source file that is read. This is the right place
to add substitutions that should be available in every file. An example:

rst_epilog = """
.. |psf| replace:: Python Software Foundation
"""

New in version 0.6.

default_role
The name of a reST role (builtin or Sphinx extension) to use as the default role, that is, for text marked up `like
this`. This can be set to 'obj' to make `filter` a cross-reference to the function "filter". The default is
None, which doesn't reassign the default role.
The default role can always be set within individual documents using the standard reST default-role
directive.
New in version 0.4.

keep_warnings
If true, keep warnings as "system message" paragraphs in the built documents. Regardless of this setting,
warnings are always written to the standard error stream when sphinx-build is run.
The default is False, the pre-0.5 behavior was to always keep them.
New in version 0.5.

modindex_common_prefix
A list of prefixes that are ignored for sorting the module index (e.g., if this is set to ['foo.'], then foo.bar is
shown under B, not F). This can be handy if you document a project that consists of a single package. Works only
for the HTML builder currently. Default is [].
New in version 0.6.

Project information

project
The documented project's name.

copyright
A copyright statement in the style '2008, Author Name'.

version
The major project version, used as the replacement for |version|. For example, for the Python documentation,
this may be something like 2.6.

release
The full project version, used as the replacement for |release| and e.g. in the HTML templates. For example,
for the Python documentation, this may be something like 2.6.0rc1.
If you don't need the separation provided between version and release, just set them both to the same value.

language
The code for the language the docs are written in. Any text automatically generated by Sphinx will be in that
language. Also, in the LaTeX builder, a suitable language will be selected as an option for the Babel package.
Default is None, which means that no translation will be done.
New in version 0.5.
Currently supported languages are:

• cs -- Czech

• de -- German

• en -- English

• es -- Spanish

• fi -- Finnish

• fr -- French

• it -- Italian

• nl -- Dutch

• pl -- Polish

• pt_BR -- Brazilian Portuguese

• ru -- Russian

• sl -- Slovenian

• uk_UA -- Ukrainian

• zh_TW -- Traditional Chinese

today

today_fmt
These values determine how to format the current date, used as the replacement for |today|.

• If you set today to a non-empty value, it is used.

• Otherwise, the current time is formatted using time.strftime() and the format given in today_fmt.

The default is no today and a today_fmt of '%B %d, %Y' (or, if translation is enabled with language, am
equivalent %format for the selected locale).

highlight_language
The default language to highlight source code in. The default is 'python'. The value should be a valid Pygments
lexer name, see Showing code examples for more details.
New in version 0.5.

pygments_style
The style name to use for Pygments highlighting of source code. Default is 'sphinx', which is a builtin style
designed to match Sphinx' default style.
Changed in version 0.3: If the value is a fully-qualified name of a custom Pygments style class, this is then used
as custom style.

add_function_parentheses
A boolean that decides whether parentheses are appended to function and method role text (e.g. the content of
:func:`input`) to signify that the name is callable. Default is True.

add_module_names
A boolean that decides whether module names are prepended to all description unit titles, e.g. for function
directives. Default is True.

show_authors
A boolean that decides whether moduleauthor and sectionauthor directives produce any output in the built
files.

trim_footnote_reference_space
Trim spaces before footnote references that are necessary for the reST parser to recognize the footnote, but do
not look too nice in the output.
New in version 0.6.

Options for HTML output
These options influence HTML as well as HTML Help output, and other builders that use Sphinx' HTMLWriter class.

html_theme
The "theme" that the HTML output should use. See the section about theming. The default is 'default'.
New in version 0.6.

html_theme_options
A dictionary of options that influence the look and feel of the selected theme. These are theme-specific. For the
options understood by the builtin themes, see this section.
New in version 0.6.

html_theme_path
A list of paths that contain custom themes, either as subdirectories or as zip files. Relative paths are taken as
relative to the configuration directory.
New in version 0.6.

html_style
The style sheet to use for HTML pages. A file of that name must exist either in Sphinx' static/ path, or in one
of the custom paths given in html_static_path. Default is the stylesheet given by the selected theme. If you
only want to add or override a few things compared to the theme's stylesheet, use CSS @import to import the
theme's stylesheet.

html_title
The "title" for HTML documentation generated with Sphinx' own templates. This is appended to the <title> tag
of individual pages, and used in the navigation bar as the "topmost" element. It defaults to '<project>
v<revision> documentation', where the placeholders are replaced by the config values of the same name.

html_short_title
A shorter "title" for the HTML docs. This is used in for links in the header and in the HTML Help docs. If not given,
it defaults to the value of html_title.
New in version 0.4.

html_logo
If given, this must be the name of an image file that is the logo of the docs. It is placed at the top of the sidebar; its
width should therefore not exceed 200 pixels. Default: None.
New in version 0.4.1: The image file will be copied to the _static directory of the output HTML, so an already
existing file with that name will be overwritten.

html_favicon
If given, this must be the name of an image file (within the static path, see below) that is the favicon of the docs.
Modern browsers use this as icon for tabs, windows and bookmarks. It should be a Windows-style icon file
(.ico), which is 16x16 or 32x32 pixels large. Default: None.
New in version 0.4.

html_static_path

A list of paths that contain custom static files (such as style sheets or script files). Relative paths are taken as
relative to the configuration directory. They are copied to the output directory after the theme's static files, so a file
named default.css will overwrite the theme's default.css.
Changed in version 0.4: The paths in html_static_path can now contain subdirectories.

html_last_updated_fmt
If this is not the empty string, a 'Last updated on:' timestamp is inserted at every page bottom, using the given
strftime() format. Default is '%b %d, %Y' (or a locale-dependent equivalent).

html_use_smartypants
If true, SmartyPants will be used to convert quotes and dashes to typographically correct entities. Default: True.

html_add_permalinks
If true, Sphinx will add "permalinks" for each heading and description environment as paragraph signs that
become visible when the mouse hovers over them. Default: True.
New in version 0.6: Previously, this was always activated.

html_sidebars
Custom sidebar templates, must be a dictionary that maps document names to template names. Example:

html_sidebars = {
 'using/windows': 'windowssidebar.html'
}

This will render the template windowssidebar.html within the sidebar of the given document.

html_additional_pages
Additional templates that should be rendered to HTML pages, must be a dictionary that maps document names to
template names.
Example:

html_additional_pages = {
 'download': 'customdownload.html',
}

This will render the template customdownload.html as the page download.html.

Note
Earlier versions of Sphinx had a value called html_index which was a clumsy way of controlling the content
of the "index" document. If you used this feature, migrate it by adding an 'index' key to this setting, with
your custom template as the value, and in your custom template, use

{% extend "defindex.html" %}
{% block tables %}
... old template content ...
{% endblock %}

html_use_modindex
If true, add a module index to the HTML documents. Default is True.

html_use_index
If true, add an index to the HTML documents. Default is True.
New in version 0.4.

html_split_index
If true, the index is generated twice: once as a single page with all the entries, and once as one page per starting
letter. Default is False.
New in version 0.4.

html_copy_source
If true, the reST sources are included in the HTML build as _sources/name. The default is True.

Warning
If this config value is set to False, the JavaScript search function will only display the titles of matching
documents, and no excerpt from the matching contents.

html_show_sourcelink
If true (and html_copy_source is true as well), links to the reST sources will be added to the sidebar. The
default is True.
New in version 0.6.

html_use_opensearch
If nonempty, an OpenSearch <http://opensearch.org> description file will be output, and all pages will contain a
<link> tag referring to it. Since OpenSearch doesn't support relative URLs for its search page location, the value
of this option must be the base URL from which these documents are served (without trailing slash), e.g.
"http://docs.python.org". The default is ''.

html_file_suffix
If nonempty, this is the file name suffix for generated HTML files. The default is ".html".
New in version 0.4.

html_link_suffix
Suffix for generated links to HTML files. The default is whatever html_file_suffix is set to; it can be set
differently (e.g. to support different web server setups).
New in version 0.6.

html_translator_class
A string with the fully-qualified name of a HTML Translator class, that is, a subclass of Sphinx' HTMLTranslator,
that is used to translate document trees to HTML. Default is None (use the builtin translator).

html_show_sphinx
If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
New in version 0.4.

htmlhelp_basename
Output file base name for HTML help builder. Default is 'pydoc'.

Options for LaTeX output
These options influence LaTeX output.

latex_documents
This value determines how to group the document tree into LaTeX source files. It must be a list of tuples
(startdocname, targetname, title, author, documentclass, toctree_only), where the items
are:

• startdocname: document name that is the "root" of the LaTeX file. All documents referenced by it in TOC
trees will be included in the LaTeX file too. (If you want only one LaTeX file, use your master_doc here.)

• targetname: file name of the LaTeX file in the output directory.

• title: LaTeX document title. Can be empty to use the title of the startdoc. This is inserted as LaTeX markup,
so special characters like a backslash or ampersand must be represented by the proper LaTeX commands
if they are to be inserted literally.

• author: Author for the LaTeX document. The same LaTeX markup caveat as for title applies. Use \and to
separate multiple authors, as in: 'John \and Sarah'.

• documentclass: Must be one of 'manual' or 'howto'. Only "manual" documents will get appendices.
Also, howtos will have a simpler title page.

• toctree_only: Must be True or False. If True, the startdoc document itself is not included in the output,
only the documents referenced by it via TOC trees. With this option, you can put extra stuff in the master
document that shows up in the HTML, but not the LaTeX output.

New in version 0.3: The 6th item toctree_only. Tuples with 5 items are still accepted.

latex_logo
If given, this must be the name of an image file (relative to the configuration directory) that is the logo of the docs.
It is placed at the top of the title page. Default: None.

latex_use_parts
If true, the topmost sectioning unit is parts, else it is chapters. Default: False.
New in version 0.3.

latex_appendices
A list of document names to append as an appendix to all manuals.

latex_use_modindex
If true, add a module index to LaTeX documents. Default is True.

latex_elements
New in version 0.5.
A dictionary that contains LaTeX snippets that override those Sphinx usually puts into the generated .tex files.
Keep in mind that backslashes must be doubled in Python string literals to avoid interpretation as escape
sequences.

• Keys that you may want to override include:

'papersize'
Paper size option of the document class ('a4paper' or 'letterpaper'), default 'letterpaper'.

'pointsize'
Point size option of the document class ('10pt', '11pt' or '12pt'), default '10pt'.

'babel'
"babel" package inclusion, default '\\usepackage{babel}'.

'fontpkg'
Font package inclusion, default '\\usepackage{times}' (which uses Times and Helvetica). You can
set this to '' to use the Computer Modern fonts.

'fncychap'
Inclusion of the "fncychap" package (which makes fancy chapter titles), default
'\\usepackage[Bjarne]{fncychap}' for English documentation,
'\\usepackage[Sonny]{fncychap}' for internationalized docs (because the "Bjarne" style uses
numbers spelled out in English). Other "fncychap" styles you can try include "Lenny", "Glenn", "Conny" and
"Rejne". You can also set this to '' to disable fncychap.

'preamble'
Additional preamble content, default empty.

'footer'`
Additional footer content (before the indices), default empty.

• Keys that don't need be overridden unless in special cases are:

'inputenc'
"inputenc" package inclusion, default '\\usepackage[utf8]{inputenc}'.

'fontenc'
"fontenc" package inclusion, default '\\usepackage[T1]{fontenc}'.

'maketitle'
"maketitle" call, default '\\maketitle'. Override if you want to generate a differently-styled title page.

'tableofcontents'
"tableofcontents" call, default '\\tableofcontents'. Override if you want to generate a different table of
contents or put content between the title page and the TOC.

'printindex'
"printindex" call, the last thing in the file, default '\\printindex'. Override if you want to generate the
index differently or append some content after the index.

• Keys that are set by other options and therefore should not be overridden are:
'docclass' 'classoptions' 'title' 'date' 'release' 'author' 'logo'
'releasename' 'makeindex' 'makemodindex' 'shorthandoff' 'printmodindex'

latex_additional_files

A list of file names, relative to the configuration directory, to copy to the build directory when building LaTeX
output. This is useful to copy files that Sphinx doesn't copy automatically, e.g. if they are referenced in custom
LaTeX added in latex_elements. Image files that are referenced in source files (e.g. via .. image::) are
copied automatically.
You have to make sure yourself that the filenames don't collide with those of any automatically copied files.
New in version 0.6.

latex_preamble
Additional LaTeX markup for the preamble.
Deprecated since version 0.5: Use the 'preamble' key in the latex_elements value.

latex_paper_size
The output paper size ('letter' or 'a4'). Default is 'letter'.
Deprecated since version 0.5: Use the 'papersize' key in the latex_elements value.

latex_font_size
The font size ('10pt', '11pt' or '12pt'). Default is '10pt'.
Deprecated since version 0.5: Use the 'pointsize' key in the latex_elements value.

HTML theming support
New in version 0.6.

Sphinx supports changing the appearance of its HTML output via themes. A theme is a collection of HTML
templates, stylesheet(s) and other static files. Additionally, it has a configuration file which specifies from which
theme to inherit, which highlighting style to use, and what options exist for customizing the theme's look and feel.

Themes are meant to be project-unaware, so they can be used for different projects without change.

Using a theme
Using an existing theme is easy. If the theme is builtin to Sphinx, you only need to set the html_theme config
value. With the html_theme_options config value you can set theme-specific options that change the look and
feel. For example, you could have the following in your conf.py:

html_theme = "default"
html_theme_options = {
 "rightsidebar": "true",
 "relbarbgcolor": "black"
}

That would give you the default theme, but with a sidebar on the right side and a black background for the relation
bar (the bar with the navigation links at the page's top and bottom).

If the theme does not come with Sphinx, it can be in two forms: either a directory (containing theme.conf and
other needed files), or a zip file with the same contents. Either of them must be put where Sphinx can find it; for this
there is the config value html_theme_path. It gives a list of directories, relative to the directory containing
conf.py, that can contain theme directories or zip files. For example, if you have a theme in the file blue.zip, you
can put it right in the directory containing conf.py and use this configuration:

html_theme = "blue"
html_theme_path = ["."]

Builtin themes
Sphinx comes with a selection of themes to choose from:

• basic -- This is a basically unstyled layout used as the base for the default and sphinxdoc themes, and usable
as the base for custom themes as well. The HTML contains all important elements like sidebar and relation
bar. There is one option (which is inherited by default and sphinxdoc):

• nosidebar (true or false): Don't include the sidebar. Defaults to false.

• default -- This is the default theme. It can be customized via these options:

• rightsidebar (true or false): Put the sidebar on the right side. Defaults to false.

• stickysidebar (true or false): Make the sidebar "fixed" so that it doesn't scroll out of view for long body
content. This may not work well with all browsers. Defaults to false.

There are also various color and font options that can change the color scheme without having to write a
custom stylesheet:

• footerbgcolor (CSS color): Background color for the footer line.

• footertextcolor (CSS color): Text color for the footer line.

• sidebarbgcolor (CSS color): Background color for the sidebar.

• sidebartextcolor (CSS color): Text color for the sidebar.

• sidebarlinkcolor (CSS color): Link color for the sidebar.

• relbarbgcolor (CSS color): Background color for the relation bar.

• relbartextcolor (CSS color): Text color for the relation bar.

• relbarlinkcolor (CSS color): Link color for the relation bar.

• bgcolor (CSS color): Body background color.

• textcolor (CSS color): Body text color.

• linkcolor (CSS color): Body link color.

• headbgcolor (CSS color): Background color for headings.

• headtextcolor (CSS color): Text color for headings.

• headlinkcolor (CSS color): Link color for headings.

• codebgcolor (CSS color): Background color for code blocks.

• codetextcolor (CSS color): Default text color for code blocks, if not set differently by the highlighting
style.

• bodyfont (CSS font-family): Font for normal text.

• headfont (CSS font-family): Font for headings.

• sphinxdoc -- The theme used for this documentation. It features a sidebar on the right side. There are
currently no options beyond nosidebar.

• traditional -- A theme resembling the old Python documentation. There are currently no options beyond
nosidebar.

Creating themes
As said, themes are either a directory or a zipfile (whose name is the theme name), containing the following:

• A theme.conf file, see below.

• HTML templates, if needed.

• A static/ directory containing any static files that will be copied to the output statid directory on build.
These can be images, styles, script files.

The theme.conf file is in INI format 4 (readable by the standard Python ConfigParser module) and has the
following structure:

[theme]
inherit = base theme
stylesheet = main CSS name
pygments_style = stylename

[options]
variable = default value

• The inherit setting gives the name of a "base theme", or none. The base theme will be used to locate missing
templates (most themes will not have to supply most templates if they use basic as the base theme), its
options will be inherited, and all of its static files will be used as well.

• The stylesheet setting gives the name of a CSS file which will be referenced in the HTML header. If you need
more than one CSS file, either include one from the other via CSS' @import, or use a custom HTML template
that adds <link rel="stylesheet"> tags as necessary. Setting the html_style config value will
override this setting.

• The pygments_style setting gives the name of a Pygments style to use for highlighting. This can be
overridden by the user in the pygments_style config value.

• The options section contains pairs of variable names and default values. These options can be overridden by
the user in html_theme_options and are accessible from all templates as theme_<name>.

Templating

The guide to templating is helpful if you want to write your own templates. What is important to keep in mind is the
order in which Sphinx searches for templates:

• First, in the user's templates_path directories.

• Then, in the selected theme.

• Then, in its base theme, its base's base theme, etc.

When extending a template in the base theme with the same name, use the theme name as an explicit directory:
{% extends "basic/layout.html" %}. From a user templates_path template, you can still use the
"exclamation mark" syntax as described in the templating document.

Static templates

Since theme options are meant for the user to configure a theme more easily, without having to write a custom
stylesheet, it is necessary to be able to template static files as well as HTML files. Therefore, Sphinx supports
so-called "static templates", like this:

If the name of a file in the static/ directory of a theme (or in the user's static path, for that matter) ends with _t, it
will be processed by the template engine. The _t will be left from the final file name. For example, the default
theme has a file static/default.css_t which uses templating to put the color options into the stylesheet.
When a documentation is built with the default theme, the output directory will contain a _static/default.css
file where all template tags have been processed.

4 It is not an executable Python file, as opposed to conf.py, because that would pose an
unnecessary security risk if themes are shared.

Templating
Sphinx uses the Jinja templating engine for its HTML templates. Jinja is a text-based engine, and inspired by Django
templates, so anyone having used Django will already be familiar with it. It also has excellent documentation for
those who need to make themselves familiar with it.

Do I need to use Sphinx' templates to produce HTML?
No. You have several other options:

• You can write a TemplateBridge subclass that calls your template engine of choice, and set the
template_bridge configuration value accordingly.

• You can write a custom builder that derives from StandaloneHTMLBuilder and calls your template engine
of choice.

• You can use the PickleHTMLBuilder that produces pickle files with the page contents, and postprocess
them using a custom tool, or use them in your Web application.

Jinja/Sphinx Templating Primer
The default templating language in Sphinx is Jinja. It's Django/Smarty inspired and easy to understand. The most
important concept in Jinja is template inheritance, which means that you can overwrite only specific blocks within a
template, customizing it while also keeping the changes at a minimum.

To customize the output of your documentation you can override all the templates (both the layout templates and the
child templates) by adding files with the same name as the original filename into the template directory of the
structure the Sphinx quickstart generated for you.

Sphinx will look for templates in the folders of templates_path first, and if it can't find the template it's looking for
there, it falls back to the selected theme's templates.

http://jinja.pocoo.org

A template contains variables, which are replaced with values when the template is evaluated, tags, which control
the logic of the template and blocks which are used for template inheritance.

Sphinx' basic theme provides base templates with a couple of blocks it will fill with data. These are located in the
themes/basic subdirectory of the Sphinx installation directory, and used by all builtin Sphinx themes. Templates
with the same name in the templates_path override templates supplied by the selected theme.

For example, to add a new link to the template area containing related links all you have to do is to add a new
template called layout.html with the following contents:

{% extends "!layout.html" %}
{% block rootrellink %}
 Project Homepage »
 {{ super() }}
{% endblock %}

By prefixing the name of the overridden template with an exclamation mark, Sphinx will load the layout template
from the underlying HTML theme.

Important: If you override a block, call {{ super() }} somewhere to render the block's content in the extended
template -- unless you don't want that content to show up.

Working with the builtin templates
The builtin basic theme supplies the templates that all builtin Sphinx themes are based on. It has the following
elements you can override or use:

Blocks

The following blocks exist in the layout.html template:

doctype
The doctype of the output format. By default this is XHTML 1.0 Transitional as this is the closest to what Sphinx
and Docutils generate and it's a good idea not to change it unless you want to switch to HTML 5 or a different but
compatible XHTML doctype.

linktags
This block adds a couple of <link> tags to the head section of the template.

extrahead
This block is empty by default and can be used to add extra contents into the <head> tag of the generated HTML
file. This is the right place to add references to JavaScript or extra CSS files.

relbar1 / relbar2
This block contains the relation bar, the list of related links (the parent documents on the left, and the links to
index, modules etc. on the right). relbar1 appears before the document, relbar2 after the document. By default,
both blocks are filled; to show the relbar only before the document, you would override relbar2 like this:

{% block relbar2 %}{% endblock %}

rootrellink / relbaritems
Inside the relbar there are three sections: The rootrellink, the links from the documentation and the custom
relbaritems. The rootrellink is a block that by default contains a list item pointing to the master document by
default, the relbaritems is an empty block. If you override them to add extra links into the bar make sure that they
are list items and end with the reldelim1.

document
The contents of the document itself. It contains the block "body" where the individual content is put by
subtemplates like page.html.

sidebar1 / sidebar2
A possible location for a sidebar. sidebar1 appears before the document and is empty by default, sidebar2 after
the document and contains the default sidebar. If you want to swap the sidebar location override this and call the
sidebar helper:

{% block sidebar1 %}{{ sidebar() }}{% endblock %}
{% block sidebar2 %}{% endblock %}

(The sidebar2 location for the sidebar is needed by the sphinxdoc.css stylesheet, for example.)

sidebarlogo

The logo location within the sidebar. Override this if you want to place some content at the top of the sidebar.

sidebartoc
The table of contents within the sidebar.

sidebarrel
The relation links (previous, next document) within the sidebar.

sidebarsourcelink
The "Show source" link within the sidebar (normally only shown if this is enabled by html_show_sourcelink).

sidebarsearch
The search box within the sidebar. Override this if you want to place some content at the bottom of the sidebar.

footer
The block for the footer div. If you want a custom footer or markup before or after it, override this one.

Configuration Variables

Inside templates you can set a couple of variables used by the layout template using the {% set %} tag:

reldelim1
The delimiter for the items on the left side of the related bar. This defaults to ' »' Each item in the
related bar ends with the value of this variable.

reldelim2
The delimiter for the items on the right side of the related bar. This defaults to ' |'. Each item except of the last
one in the related bar ends with the value of this variable.

Overriding works like this:

{% extends "!layout.html" %}
{% set reldelim1 = ' >' %}

script_files
Add additional script files here, like this:

{% set script_files = script_files + [pathto("_static/myscript.js", 1)] %}

Helper Functions

Sphinx provides various Jinja functions as helpers in the template. You can use them to generate links or output
multiply used elements.

pathto (document)
Return the path to a Sphinx document as a URL. Use this to refer to built documents.

pathto (file, 1)
Return the path to a file which is a filename relative to the root of the generated output. Use this to refer to static
files.

hasdoc (document)
Check if a document with the name document exists.

sidebar ()
Return the rendered sidebar.

relbar ()
Return the rendered relation bar.

Global Variables

These global variables are available in every template and are safe to use. There are more, but most of them are an
implementation detail and might change in the future.

builder
The name of the builder (e.g. html or htmlhelp).

copyright

The value of copyright.

docstitle
The title of the documentation (the value of html_title).

embedded
True if the built HTML is meant to be embedded in some viewing application that handles navigation, not the web
browser, such as for HTML help or Qt help formats. In this case, the sidebar is not included.

favicon
The path to the HTML favicon in the static path, or ''.

file_suffix
The value of the builder's out_suffix attribute, i.e. the file name extension that the output files will get. For a
standard HTML builder, this is usually .html.

has_source
True if the reST document sources are copied (if html_copy_source is true).

last_updated
The build date.

logo
The path to the HTML logo image in the static path, or ''.

master_doc
The value of master_doc, for usage with pathto().

next
The next document for the navigation. This variable is either false or has two attributes link and title. The title
contains HTML markup. For example, to generate a link to the next page, you can use this snippet:

{% if next %}
{{ next.title }}
{% endif %}

pagename
The "page name" of the current file, i.e. either the document name if the file is generated from a reST source, or
the equivalent hierarchical name relative to the output directory
([directory/]filename_without_extension).

parents
A list of parent documents for navigation, structured like the next item.

prev
Like next, but for the previous page.

project
The value of project.

release
The value of release.

rellinks
A list of links to put at the left side of the relbar, next to "next" and "prev". This usually contains links to the index
and the modindex. If you add something yourself, it must be a tuple (pagename, link title, accesskey,
link text).

shorttitle
The value of html_short_title.

show_source

True if html_show_sourcelink is true.

sphinx_version
The version of Sphinx used to build.

style
The name of the main stylesheet, as given by the theme or html_style.

title
The title of the current document, as used in the <title> tag.

use_opensearch
The value of html_use_opensearch.

version
The value of version.

In addition to these values, there are also all theme options available (prefixed by theme_), as well as the values
given by the user in html_context.

In documents that are created from source files (as opposed to automatically-generated files like the module index,
or documents that already are in HTML form), these variables are also available:

meta
Document metadata, see File-wide metadata.

sourcename
The name of the copied source file for the current document. This is only nonempty if the html_copy_source
value is true.

toc
The local table of contents for the current page, rendered as HTML bullet lists.

toctree
A callable yielding the global TOC tree containing the current page, rendered as HTML bullet lists. If the optional
keyword argument collapse is true, all TOC entries that are not ancestors of the current page are collapsed.

Sphinx Extensions

Since many projects will need special features in their documentation, Sphinx is designed to be extensible on
several levels.

This is what you can do in an extension: First, you can add new builders to support new output formats or actions on
the parsed documents. Then, it is possible to register custom reStructuredText roles and directives, extending the
markup. And finally, there are so-called "hook points" at strategic places throughout the build process, where an
extension can register a hook and run specialized code.

An extension is simply a Python module. When an extension is loaded, Sphinx imports this module and executes its
setup() function, which in turn notifies Sphinx of everything the extension offers -- see the extension tutorial for
examples.

The configuration file itself can be treated as an extension if it contains a setup() function. All other extensions to
load must be listed in the extensions configuration value.

Tutorial: Writing a simple extension
This section is intended as a walkthrough for the creation of custom extensions. It covers the basics of writing and
activating an extensions, as well as commonly used features of extensions.

As an example, we will cover a "todo" extension that adds capabilities to include todo entries in the documentation,
and collecting these in a central place. (A similar "todo" extension is distributed with Sphinx.)

Build Phases

One thing that is vital in order to understand extension mechanisms is the way in which a Sphinx project is built: this
works in several phases.

Phase 0: Initialization

In this phase, almost nothing interesting for us happens. The source directory is searched for source files, and
extensions are initialized. Should a stored build environment exist, it is loaded, otherwise a new one is created.

Phase 1: Reading

In Phase 1, all source files (and on subsequent builds, those that are new or changed) are read and parsed.
This is the phase where directives and roles are encountered by the docutils, and the corresponding functions
are called. The output of this phase is a doctree for each source files, that is a tree of docutils nodes. For
document elements that aren't fully known until all existing files are read, temporary nodes are created.

During reading, the build environment is updated with all meta- and cross reference data of the read
documents, such as labels, the names of headings, described Python objects and index entries. This will later
be used to replace the temporary nodes.

The parsed doctrees are stored on the disk, because it is not possible to hold all of them in memory.

Phase 2: Consistency checks

Some checking is done to ensure no surprises in the built documents.

Phase 3: Resolving

Now that the metadata and cross-reference data of all existing documents is known, all temporary nodes are
replaced by nodes that can be converted into output. For example, links are created for object references that
exist, and simple literal nodes are created for those that don't.

Phase 4: Writing

This phase converts the resolved doctrees to the desired output format, such as HTML or LaTeX. This happens
via a so-called docutils writer that visits the individual nodes of each doctree and produces some output in the
process.

Note

Some builders deviate from this general build plan, for example, the builder that checks external links does not
need anything more than the parsed doctrees and therefore does not have phases 2--4.

Extension Design

We want the extension to add the following to Sphinx:

• A "todo" directive, containing some content that is marked with "TODO", and only shown in the output if a new
config value is set. (Todo entries should not be in the output by default.)

• A "todolist" directive that creates a list of all todo entries throughout the documentation.

For that, we will need to add the following elements to Sphinx:

• New directives, called todo and todolist.

• New document tree nodes to represent these directives, conventionally also called todo and todolist. We
wouldn't need new nodes if the new directives only produced some content representable by existing nodes.

• A new config value todo_include_todos (config value names should start with the extension name, in
order to stay unique) that controls whether todo entries make it into the output.

• New event handlers: one for the doctree-resolved event, to replace the todo and todolist nodes, and one
for env-purge-doc (the reason for that will be covered later).

The Setup Function

The new elements are added in the extension's setup function. Let us create a new Python module called todo.py
and add the setup function:

def setup(app):
 app.add_config_value('todo_include_todos', False, False)

 app.add_node(todolist)
 app.add_node(todo,
 html=(visit_todo_node, depart_todo_node),
 latex=(visit_todo_node, depart_todo_node),
 text=(visit_todo_node, depart_todo_node))

 app.add_directive('todo', TodoDirective)
 app.add_directive('todolist', TodolistDirective)
 app.connect('doctree-resolved', process_todo_nodes)
 app.connect('env-purge-doc', purge_todos)

The calls in this function refer to classes and functions not yet written. What the individual calls do is the following:

• add_config_value() lets Sphinx know that it should recognize the new config value
todo_include_todos, whose default value should be False (this also tells Sphinx that it is a boolean
value).
If the third argument was True, all documents would be re-read if the config value changed its value. This is
needed for config values that influence reading (build phase 1).

• add_node() adds a new node class to the build system. It also can specify visitor functions for each
supported output format. These visitor functions are needed when the new nodes stay until phase 4 -- since
the todolist node is always replaced in phase 3, it doesn't need any.
We need to create the two node classes todo and todolist later.

• add_directive() adds a new directive, given by name and class.
The handler functions are created later.

• Finally, connect() adds an event handler to the event whose name is given by the first argument. The event
handler function is called with several arguments which are documented with the event.

The Node Classes

Let's start with the node classes:

from docutils import nodes

class todo(nodes.Admonition, nodes.Element):
 pass

class todolist(nodes.General, nodes.Element):
 pass

def visit_todo_node(self, node):
 self.visit_admonition(node)

def depart_todo_node(self, node):
 self.depart_admonition(node)

Node classes usually don't have to do anything except inherit from the standard docutils classes defined in
docutils.nodes. todo inherits from Admonition because it should be handled like a note or warning,
todolist is just a "general" node.

The Directive Classes

A directive class is a class deriving usually from docutils.parsers.rst.Directive. Since the class-based
directive interface doesn't exist yet in Docutils 0.4, Sphinx has another base class called
sphinx.util.compat.Directive that you can derive your directive from, and it will work with both Docutils 0.4
and 0.5 upwards. The directive interface is covered in detail in the docutils documentation; the important thing is that
the class has a method run that returns a list of nodes.

The todolist directive is quite simple:

from sphinx.util.compat import Directive

class TodolistDirective(Directive):

 def run(self):
 return [todolist('')]

An instance of our todolist node class is created and returned. The todolist directive has neither content nor
arguments that need to be handled.

The todo directive function looks like this:

from sphinx.util.compat import make_admonition

class TodoDirective(Directive):

 # this enables content in the directive
 has_content = True

 def run(self):
 env = self.state.document.settings.env

 targetid = "todo-%s" % env.index_num
 env.index_num += 1
 targetnode = nodes.target('', '', ids=[targetid])

 ad = make_admonition(todo, self.name, [_('Todo')], self.options,
 self.content, self.lineno, self.content_offset,
 self.block_text, self.state, self.state_machine)

 if not hasattr(env, 'todo_all_todos'):
 env.todo_all_todos = []
 env.todo_all_todos.append({
 'docname': env.docname,
 'lineno': self.lineno,
 'todo': ad[0].deepcopy(),
 'target': targetnode,
 })

 return [targetnode] + ad

Several important things are covered here. First, as you can see, you can refer to the build environment instance
using self.state.document.settings.env.

Then, to act as a link target (from the todolist), the todo directive needs to return a target node in addition to the todo
node. The target ID (in HTML, this will be the anchor name) is generated by using env.index_num which is
persistent between directive calls and therefore leads to unique target names. The target node is instantiated
without any text (the first two arguments).

An admonition is created using a standard docutils function (wrapped in Sphinx for docutils cross-version
compatibility). The first argument gives the node class, in our case todo. The third argument gives the admonition
title (use arguments here to let the user specify the title). A list of nodes is returned from make_admonition.

Then, the todo node is added to the environment. This is needed to be able to create a list of all todo entries
throughout the documentation, in the place where the author puts a todolist directive. For this case, the
environment attribute todo_all_todos is used (again, the name should be unique, so it is prefixed by the
extension name). It does not exist when a new environment is created, so the directive must check and create it if
necessary. Various information about the todo entry's location are stored along with a copy of the node.

In the last line, the nodes that should be put into the doctree are returned: the target node and the admonition node.

The node structure that the directive returns looks like this:

+--------------------+
| target node |
+--------------------+
+--------------------+
| todo node |

+--------------------+
 __+--------------------+
 | admonition title |
 +--------------------+
 | paragraph |
 +--------------------+
 | ... |
 +--------------------+

The Event Handlers

Finally, let's look at the event handlers. First, the one for the env-purge-doc event:

def purge_todos(app, env, docname):
 if not hasattr(env, 'todo_all_todos'):
 return
 env.todo_all_todos = [todo for todo in env.todo_all_todos
 if todo['docname'] != docname]

Since we store information from source files in the environment, which is persistent, it may become out of date when
the source file changes. Therefore, before each source file is read, the environment's records of it are cleared, and
the env-purge-doc event gives extensions a chance to do the same. Here we clear out all todos whose docname
matches the given one from the todo_all_todos list. If there are todos left in the document, they will be added
again during parsing.

The other handler belongs to the doctree-resolved event. This event is emitted at the end of phase 3 and
allows custom resolving to be done:

def process_todo_nodes(app, doctree, fromdocname):
 if not app.config.todo_include_todos:
 for node in doctree.traverse(todo):
 node.parent.remove(node)

 # Replace all todolist nodes with a list of the collected todos.
 # Augment each todo with a backlink to the original location.
 env = app.builder.env

 for node in doctree.traverse(todolist):
 if not app.config.todo_include_todos:
 node.replace_self([])
 continue

 content = []

 for todo_info in env.todo_all_todos:
 para = nodes.paragraph()
 filename = env.doc2path(todo_info['docname'], base=None)
 description = (
 _('(The original entry is located in %s, line %d and can be found ') %
 (filename, todo_info['lineno']))
 para += nodes.Text(description, description)

 # Create a reference
 newnode = nodes.reference('', '')
 innernode = nodes.emphasis(_('here'), _('here'))
 newnode['refdocname'] = todo_info['docname']
 newnode['refuri'] = app.builder.get_relative_uri(
 fromdocname, todo_info['docname'])
 newnode['refuri'] += '#' + todo_info['target']['refid']
 newnode.append(innernode)
 para += newnode
 para += nodes.Text('.)', '.)')

 # Insert into the todolist

 content.append(todo_info['todo'])
 content.append(para)

 node.replace_self(content)

It is a bit more involved. If our new "todo_include_todos" config value is false, all todo and todolist nodes are
removed from the documents.

If not, todo nodes just stay where and how they are. Todolist nodes are replaced by a list of todo entries, complete
with backlinks to the location where they come from. The list items are composed of the nodes from the todo entry
and docutils nodes created on the fly: a paragraph for each entry, containing text that gives the location, and a link
(reference node containing an italic node) with the backreference. The reference URI is built by
app.builder.get_relative_uri which creates a suitable URI depending on the used builder, and appending
the todo node's (the target's) ID as the anchor name.

Extension API
Each Sphinx extension is a Python module with at least a setup() function. This function is called at initialization
time with one argument, the application object representing the Sphinx process. This application object has the
following public API:

Sphinx.setup_extension (name)
Load the extension given by the module name. Use this if your extension needs the features provided by another
extension.

Sphinx.add_builder (builder)
Register a new builder. builder must be a class that inherits from Builder.

Sphinx.add_config_value (name, default, rebuild)
Register a configuration value. This is necessary for Sphinx to recognize new values and set default values
accordingly. The name should be prefixed with the extension name, to avoid clashes. The default value can be
any Python object. The string value rebuild must be one of those values:

• 'env' if a change in the setting only takes effect when a document is parsed -- this means that the whole
environment must be rebuilt.

• 'html' if a change in the setting needs a full rebuild of HTML documents.

• '' if a change in the setting will not need any special rebuild.

Changed in version 0.4: If the default value is a callable, it will be called with the config object as its argument in
order to get the default value. This can be used to implement config values whose default depends on other
values.
Changed in version 0.6: Changed rebuild from a simple boolean (equivalent to '' or 'env') to a string.
However, booleans are still accepted and converted internally.

Sphinx.add_event (name)
Register an event called name.

Sphinx.add_node (node, **kwds)
Register a Docutils node class. This is necessary for Docutils internals. It may also be used in the future to
validate nodes in the parsed documents.
Node visitor functions for the Sphinx HTML, LaTeX and text writers can be given as keyword arguments: the
keyword must be one or more of 'html', 'latex', 'text', the value a 2-tuple of (visit, depart)
methods. depart can be None if the visit function raises docutils.nodes.SkipNode. Example:

class math(docutils.nodes.Element): pass

def visit_math_html(self, node):
 self.body.append(self.starttag(node, 'math'))
def depart_math_html(self, node):
 self.body.append('</math>')

app.add_node(math, html=(visit_math_html, depart_math_html))

Obviously, translators for which you don't specify visitor methods will choke on the node when encountered in a
document to translate.
Changed in version 0.5: Added the support for keyword arguments giving visit functions.

Sphinx.add_directive (name, func, content, arguments, **options)

Sphinx.add_directive (name, directiveclass)
Register a Docutils directive. name must be the prospective directive name. There are two possible ways to write
a directive:

• In the docutils 0.4 style, func is the directive function. content, arguments and options are set as attributes
on the function and determine whether the directive has content, arguments and options, respectively.

• In the docutils 0.5 style, directiveclass is the directive class. It must already have attributes named
has_content, required_arguments, optional_arguments, final_argument_whitespace and option_spec that
correspond to the options for the function way. See the Docutils docs for details.
The directive class normally must inherit from the class docutils.parsers.rst.Directive. When
writing a directive for usage in a Sphinx extension, you inherit from sphinx.util.compat.Directive
instead which does the right thing even on docutils 0.4 (which doesn't support directive classes otherwise).

For example, the (already existing) literalinclude directive would be added like this:

from docutils.parsers.rst import directives
add_directive('literalinclude', literalinclude_directive,
 content = 0, arguments = (1, 0, 0),
 linenos = directives.flag,
 language = direcitves.unchanged,
 encoding = directives.encoding)

Changed in version 0.6: Docutils 0.5-style directive classes are now supported.

Sphinx.add_role (name, role)
Register a Docutils role. name must be the role name that occurs in the source, role the role function (see the
Docutils documentation on details).

Sphinx.add_generic_role (name, nodeclass)
Register a Docutils role that does nothing but wrap its contents in the node given by nodeclass.
New in version 0.6.

Sphinx.add_description_unit (directivename, rolename, indextemplate='', parse_node=None,
ref_nodeclass=None)

This method is a very convenient way to add a new type of information that can be cross-referenced. It will do this:

• Create a new directive (called directivename) for a description unit. It will automatically add index entries if
indextemplate is nonempty; if given, it must contain exactly one instance of %s. See the example below for
how the template will be interpreted.

• Create a new role (called rolename) to cross-reference to these description units.

• If you provide parse_node, it must be a function that takes a string and a docutils node, and it must populate
the node with children parsed from the string. It must then return the name of the item to be used in
cross-referencing and index entries. See the ext.py file in the source for this documentation for an
example.

For example, if you have this call in a custom Sphinx extension:

app.add_description_unit('directive', 'dir', 'pair: %s; directive')

you can use this markup in your documents:

.. directive:: function

 Document a function.

<...>

See also the :dir:`function` directive.

For the directive, an index entry will be generated as if you had prepended

.. index:: pair: function; directive

http://docutils.sourceforge.net/docs/howto/rst-directives.html
http://docutils.sourceforge.net/docs/howto/rst-roles.html

The reference node will be of class literal (so it will be rendered in a proportional font, as appropriate for
code) unless you give the ref_nodeclass argument, which must be a docutils node class (most useful are
docutils.nodes.emphasis or docutils.nodes.strong -- you can also use
docutils.nodes.generated if you want no further text decoration).
For the role content, you have the same options as for standard Sphinx roles (see Cross-referencing syntax).

Sphinx.add_crossref_type (directivename, rolename, indextemplate='', ref_nodeclass=None)
This method is very similar to add_description_unit() except that the directive it generates must be empty,
and will produce no output.
That means that you can add semantic targets to your sources, and refer to them using custom roles instead of
generic ones (like ref). Example call:

app.add_crossref_type('topic', 'topic', 'single: %s', docutils.nodes.emphasis)

Example usage:

.. topic:: application API

The application API

<...>

See also :topic:`this section <application API>`.

(Of course, the element following the topic directive needn't be a section.)

Sphinx.add_transform (transform)
Add the standard docutils Transform subclass transform to the list of transforms that are applied after Sphinx
parses a reST document.

Sphinx.add_javascript (filename)
Add filename to the list of JavaScript files that the default HTML template will include. The filename must be
relative to the HTML static path, see the docs for the config value.
New in version 0.5.

Sphinx.add_lexer (alias, lexer)
Use lexer, which must be an instance of a Pygments lexer class, to highlight code blocks with the given language
alias.
New in version 0.6.

Sphinx.add_autodocumenter (cls)
Add cls as a new documenter class for the sphinx.ext.autodoc extension. It must be a subclass of
sphinx.ext.autodoc.Documenter. This allows to auto-document new types of objects. See the source of the
autodoc module for examples on how to subclass Documenter.
New in version 0.6.

Sphinx.add_autodoc_attrgetter (type, getter)
Add getter, which must be a function with an interface compatible to the getattr() builtin, as the autodoc
attribute getter for objects that are instances of type. All cases where autodoc needs to get an attribute of a type
are then handled by this function instead of getattr().
New in version 0.6.

Sphinx.connect (event, callback)
Register callback to be called when event is emitted. For details on available core events and the arguments of
callback functions, please see Sphinx core events.
The method returns a "listener ID" that can be used as an argument to disconnect().

Sphinx.disconnect (listener_id)
Unregister callback listener_id.

Sphinx.emit (event, *arguments)
Emit event and pass arguments to the callback functions. Return the return values of all callbacks as a list. Do not
emit core Sphinx events in extensions!

Sphinx.emit_firstresult (event, *arguments)
Emit event and pass arguments to the callback functions. Return the result of the first callback that doesn't return
None (and don't call the rest of the callbacks).
New in version 0.5.

exception sphinx.application.ExtensionError
All these functions raise this exception if something went wrong with the extension API.

Examples of using the Sphinx extension API can be seen in the sphinx.ext package.

Sphinx core events

These events are known to the core. The arguments shown are given to the registered event handlers.

builder-inited (app)
Emitted when the builder object has been created. It is available as app.builder.

env-purge-doc (app, env, docname)
Emitted when all traces of a source file should be cleaned from the environment, that is, if the source file is
removed or before it is freshly read. This is for extensions that keep their own caches in attributes of the
environment.
For example, there is a cache of all modules on the environment. When a source file has been changed, the
cache's entries for the file are cleared, since the module declarations could have been removed from the file.
New in version 0.5.

source-read (app, docname, source)
Emitted when a source file has been read. The source argument is a list whose single element is the contents of
the source file. You can process the contents and replace this item to implement source-level transformations.
For example, if you want to use $ signs to delimit inline math, like in LaTeX, you can use a regular expression to
replace $...$ by :math:`...`.
New in version 0.5.

doctree-read (app, doctree)
Emitted when a doctree has been parsed and read by the environment, and is about to be pickled. The doctree
can be modified in-place.

missing-reference (app, env, node, contnode)
Emitted when a cross-reference to a Python module or object cannot be resolved. If the event handler can resolve
the reference, it should return a new docutils node to be inserted in the document tree in place of the node node.
Usually this node is a reference node containing contnode as a child.

Parameters: • env -- The build environment (app.builder.env).

• node -- The pending_xref node to be resolved. Its attributes reftype,
reftarget, modname and classname attributes determine the type and target of
the reference.

• contnode -- The node that carries the text and formatting inside the future reference
and should be a child of the returned reference node.

New in version 0.5.

doctree-resolved (app, doctree, docname)
Emitted when a doctree has been "resolved" by the environment, that is, all references have been resolved and
TOCs have been inserted. The doctree can be modified in place.
Here is the place to replace custom nodes that don't have visitor methods in the writers, so that they don't cause
errors when the writers encounter them.

env-updated (app, env)
Emitted when the update() method of the build environment has completed, that is, the environment and all
doctrees are now up-to-date.
New in version 0.5.

page-context (app, pagename, templatename, context, doctree)
Emitted when the HTML builder has created a context dictionary to render a template with -- this can be used to
add custom elements to the context.
The pagename argument is the canonical name of the page being rendered, that is, without .html suffix and
using slashes as path separators. The templatename is the name of the template to render, this will be
'page.html' for all pages from reST documents.

The context argument is a dictionary of values that are given to the template engine to render the page and can
be modified to include custom values. Keys must be strings.
The doctree argument will be a doctree when the page is created from a reST documents; it will be None when
the page is created from an HTML template alone.
New in version 0.4.

build-finished (app, exception)
Emitted when a build has finished, before Sphinx exits, usually used for cleanup. This event is emitted even when
the build process raised an exception, given as the exception argument. The exception is reraised in the
application after the event handlers have run. If the build process raised no exception, exception will be None.
This allows to customize cleanup actions depending on the exception status.
New in version 0.5.

The template bridge

class sphinx.application.TemplateBridge
This class defines the interface for a "template bridge", that is, a class that renders templates given a template
name and a context.

init (builder, theme=None, dirs=None)
Called by the builder to initialize the template system.
builder is the builder object; you'll probably want to look at the value of builder.config.templates_path.
theme is a sphinx.theming.Theme object or None; in the latter case, dirs can be list of fixed directories to
look for templates.

newest_template_mtime ()
Called by the builder to determine if output files are outdated because of template changes. Return the mtime of
the newest template file that was changed. The default implementation returns 0.

render (template, context)
Called by the builder to render a template given as a filename with a specified context (a Python dictionary).

render_string (template, context)
Called by the builder to render a template given as a string with a specified context (a Python dictionary).

Writing new builders

Todo

Expand this.

class sphinx.builders.Builder
This is the base class for all builders.
These methods are predefined and will be called from the application:

load_env ()
Set up the build environment.

get_relative_uri (from_, to, typ=None)
Return a relative URI between two source filenames. May raise environment.NoUri if there's no way to return a
sensible URI.

build_all ()
Build all source files.

build_specific (filenames)
Only rebuild as much as needed for changes in the filenames.

build_update ()
Only rebuild what was changed or added since last build.

build (docnames, summary=None, method='update')
Main build method. First updates the environment, and then calls write().

These methods can be overridden in concrete builder classes:

init ()
Load necessary templates and perform initialization. The default implementation does nothing.

get_outdated_docs ()
Return an iterable of output files that are outdated, or a string describing what an update build will build.
If the builder does not output individual files corresponding to source files, return a string here. If it does, return
an iterable of those files that need to be written.

get_target_uri (docname, typ=None)
Return the target URI for a document name (typ can be used to qualify the link characteristic for individual
builders).

prepare_writing (docnames)

write_doc (docname, doctree)

finish ()
Finish the building process. The default implementation does nothing.

Builtin Sphinx extensions
These extensions are built in and can be activated by respective entries in the extensions configuration value:

sphinx.ext.autodoc -- Include documentation from docstrings

This extension can import the modules you are documenting, and pull in documentation from docstrings in a
semi-automatic way.

Note

For Sphinx (actually, the Python interpreter that executes Sphinx) to find your module, it must be importable.
That means that the module or the package must be in one of the directories on sys.path -- adapt your
sys.path in the configuration file accordingly.

For this to work, the docstrings must of course be written in correct reStructuredText. You can then use all of the
usual Sphinx markup in the docstrings, and it will end up correctly in the documentation. Together with hand-written
documentation, this technique eases the pain of having to maintain two locations for documentation, while at the
same time avoiding auto-generated-looking pure API documentation.

autodoc provides several directives that are versions of the usual module, class and so forth. On parsing time,
they import the corresponding module and extract the docstring of the given objects, inserting them into the page
source under a suitable module, class etc. directive.

Note

Just as class respects the current module, autoclass will also do so, and likewise with method and
class.

.. automodule::

.. autoclass::

.. autoexception::
Document a module, class or exception. All three directives will by default only insert the docstring of the object
itself:

.. autoclass:: Noodle

will produce source like this:

.. class:: Noodle

 Noodle's docstring.

The "auto" directives can also contain content of their own, it will be inserted into the resulting non-auto directive
source after the docstring (but before any automatic member documentation).
Therefore, you can also mix automatic and non-automatic member documentation, like so:

.. autoclass:: Noodle
 :members: eat, slurp

 .. method:: boil(time=10)

 Boil the noodle *time* minutes.

Options and advanced usage

• If you want to automatically document members, there's a members option:

.. automodule:: noodle
 :members:

will document all module members (recursively), and

.. autoclass:: Noodle
 :members:

will document all non-private member functions and properties (that is, those whose name doesn't start with
_).
You can also give an explicit list of members; only these will then be documented:

.. autoclass:: Noodle
 :members: eat, slurp

• Members without docstrings will be left out, unless you give the undoc-members flag option:

.. automodule:: noodle
 :members:
 :undoc-members:

• For classes and exceptions, members inherited from base classes will be left out, unless you give the
inherited-members flag option, in addition to members:

.. autoclass:: Noodle
 :members:
 :inherited-members:

This can be combined with undoc-members to document all available members of the class or module.
Note: this will lead to markup errors if the inherited members come from a module whose docstrings are not
reST formatted.
New in version 0.3.

• It's possible to override the signature for explicitly documented callable objects (functions, methods, classes)
with the regular syntax that will override the signature gained from introspection:

.. autoclass:: Noodle(type)

 .. automethod:: eat(persona)

This is useful if the signature from the method is hidden by a decorator.
New in version 0.4.

• The automodule, autoclass and autoexception directives also support a flag option called
show-inheritance. When given, a list of base classes will be inserted just below the class signature
(when used with automodule, this will be inserted for every class that is documented in the module).
New in version 0.4.

• All autodoc directives support the noindex flag option that has the same effect as for standard function
etc. directives: no index entries are generated for the documented object (and all autodocumented
members).
New in version 0.4.

• automodule also recognizes the synopsis, platform and deprecated options that the standard
module directive supports.
New in version 0.5.

• automodule and autoclass also has an member-order option that can be used to override the global
value of autodoc_member_order for one directive.
New in version 0.6.

• The directives supporting member documentation also have a exclude-members option that can be used
to exclude single member names from documentation, if all members are to be documented.
New in version 0.6.

Note
In an automodule directive with the members option set, only module members whose __module__
attribute is equal to the module name as given to automodule will be documented. This is to prevent
documentation of imported classes or functions.

.. autofunction::

.. autodata::

.. automethod::

.. autoattribute::
These work exactly like autoclass etc., but do not offer the options used for automatic member documentation.
For module data members and class attributes, documentation can either be put into a special-formatted comment
before the attribute definition, or in a docstring after the definition. This means that in the following class definition,
both attributes can be autodocumented:

class Foo:
 """Docstring for class Foo."""

 #: Doc comment for attribute Foo.bar.
 bar = 1

 baz = 2
 """Docstring for attribute Foo.baz."""

Changed in version 0.6: autodata and autoattribute can now extract docstrings.

Note
If you document decorated functions or methods, keep in mind that autodoc retrieves its docstrings by
importing the module and inspecting the __doc__ attribute of the given function or method. That means that
if a decorator replaces the decorated function with another, it must copy the original __doc__ to the new
function.
From Python 2.5, functools.wraps() can be used to create well-behaved decorating functions.

There are also new config values that you can set:

autoclass_content
This value selects what content will be inserted into the main body of an autoclass directive. The possible
values are:

"class"
Only the class' docstring is inserted. This is the default. You can still document __init__ as a separate
method using automethod or the members option to autoclass.

"both"
Both the class' and the __init__ method's docstring are concatenated and inserted.

"init"
Only the __init__ method's docstring is inserted.

New in version 0.3.

autodoc_member_order
This value selects if automatically documented members are sorted alphabetical (value 'alphabetical') or by
member type (value 'groupwise'). The default is alphabetical.
New in version 0.6.

Docstring preprocessing

autodoc provides the following additional events:

autodoc-process-docstring (app, what, name, obj, options, lines)
New in version 0.4.
Emitted when autodoc has read and processed a docstring. lines is a list of strings -- the lines of the processed
docstring -- that the event handler can modify in place to change what Sphinx puts into the output.

Parameters: • app -- the Sphinx application object

• what -- the type of the object which the docstring belongs to (one of "module",
"class", "exception", "function", "method", "attribute")

• name -- the fully qualified name of the object

• obj -- the object itself

• options -- the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and noindex that
are true if the flag option of same name was given to the auto directive

• lines -- the lines of the docstring, see above

autodoc-process-signature (app, what, name, obj, options, signature, return_annotation)
New in version 0.5.
Emitted when autodoc has formatted a signature for an object. The event handler can return a new tuple
(signature, return_annotation) to change what Sphinx puts into the output.

Parameters: • app -- the Sphinx application object

• what -- the type of the object which the docstring belongs to (one of "module",
"class", "exception", "function", "method", "attribute")

• name -- the fully qualified name of the object

• obj -- the object itself

• options -- the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and noindex that
are true if the flag option of same name was given to the auto directive

• signature -- function signature, as a string of the form "(parameter_1,
parameter_2)", or None if introspection didn't succeed and signature wasn't
specified in the directive.

• return_annotation -- function return annotation as a string of the form " ->
annotation", or None if there is no return annotation

The sphinx.ext.autodoc module provides factory functions for commonly needed docstring processing in event
autodoc-process-docstring:

sphinx.ext.autodoc.cut_lines (pre, post=0, what=None)
Return a listener that removes the first pre and last post lines of every docstring. If what is a sequence of strings,
only docstrings of a type in what will be processed.
Use like this (e.g. in the setup() function of conf.py):

from sphinx.ext.autodoc import cut_lines
app.connect('autodoc-process-docstring', cut_lines(4, what=['module']))

This can (and should) be used in place of automodule_skip_lines.

sphinx.ext.autodoc.between (marker, what=None, keepempty=False)
Return a listener that only keeps lines between lines that match the marker regular expression. If no line matches,
the resulting docstring would be empty, so no change will be made unless keepempty is true.

If what is a sequence of strings, only docstrings of a type in what will be processed.

Skipping members

autodoc allows the user to define a custom method for determining whether a member should be included in the
documentation by using the following event:

autodoc-skip-member (app, what, name, obj, skip, options)
New in version 0.5.
Emitted when autodoc has to decide whether a member should be included in the documentation. The member is
excluded if a handler returns True. It is included if the handler returns False.

Parameters: • app -- the Sphinx application object

• what -- the type of the object which the docstring belongs to (one of "module",
"class", "exception", "function", "method", "attribute")

• name -- the fully qualified name of the object

• obj -- the object itself

• skip -- a boolean indicating if autodoc will skip this member if the user handler does
not override the decision

• options -- the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and noindex that
are true if the flag option of same name was given to the auto directive

sphinx.ext.autosummary -- Generate autodoc summaries

New in version 0.6.

This extension generates function/method/attribute summary lists, similar to those output e.g. by Epydoc and other
API doc generation tools. This is especially useful when your docstrings are long and detailed, and putting each one
of them on a separate page makes them easier to read.

The sphinx.ext.autosummary extension does this in two parts:

1. There is an autosummary directive for generating summary listings that contain links to the documented
items, and short summary blurbs extracted from their docstrings.

2. The convenience script sphinx-autogen or the new autosummary_generate config value can be used to
generate short "stub" files for the entries listed in the autosummary directives. These by default contain only
the corresponding sphinx.ext.autodoc directive.

.. autosummary::
Insert a table that contains links to documented items, and a short summary blurb (the first sentence of the
docstring) for each of them. The autosummary directive can also optionally serve as a toctree entry for the
included items.
For example,

.. currentmodule:: sphinx

.. autosummary::

 environment.BuildEnvironment
 util.relative_uri

produces a table like this:

environment.BuildEnvironment

util.relative_uri

Autosummary preprocesses the docstrings and signatures with the same autodoc-process-docstring and
autodoc-process-signature hooks as autodoc.
Options

• If you want the autosummary table to also serve as a toctree entry, use the toctree option, for
example:

.. autosummary::
 :toctree: DIRNAME

 sphinx.environment.BuildEnvironment
 sphinx.util.relative_uri

The toctree option also signals to the sphinx-autogen script that stub pages should be generated for the
entries listed in this directive. The option accepts a directory name as an argument; sphinx-autogen will by
default place its output in this directory. If no argument is given, output is placed in the same directory as the
file that contains the directive.

• If you don't want the autosummary to show function signatures in the listing, include the nosignatures
option:

.. autosummary::
 :nosignatures:

 sphinx.environment.BuildEnvironment
 sphinx.util.relative_uri

• You can specify a custom template with the template option. For example,

.. autosummary::
 :template: mytemplate.rst

 sphinx.environment.BuildEnvironment

would use the template mytemplate.rst in your templates_path to generate the pages for all entries
listed. See Customizing templates below.

sphinx-autogen -- generate autodoc stub pages

The sphinx-autogen script can be used to conveniently generate stub documentation pages for items included in
autosummary listings.

For example, the command

$ sphinx-autogen -o generated *.rst

will read all autosummary tables in the *.rst files that have the :toctree: option set, and output
corresponding stub pages in directory generated for all documented items. The generated pages by default
contain text of the form:

sphinx.util.relative_uri
========================

.. autofunction:: sphinx.util.relative_uri

If the -o option is not given, the script will place the output files in the directories specified in the :toctree:
options.

Generating stub pages automatically

If you do not want to create stub pages with sphinx-autogen, you can also use this new config value:

autosummary_generate
A list of documents for which stub pages should be generated.
The new files will be placed in the directories specified in the :toctree: options of the directives.

Customizing templates

You can customize the stub page templates, in a similar way as the HTML Jinja templates, see Templating.
(TemplateBridge is not supported.)

Note

If you find yourself spending much time tailoring the stub templates, this may indicate that it's a better idea to
write custom narrative documentation instead.

Autosummary uses the following template files:

• autosummary/base.rst -- fallback template

• autosummary/module.rst -- template for modules

• autosummary/class.rst -- template for classes

• autosummary/function.rst -- template for functions

• autosummary/attribute.rst -- template for class attributes

• autosummary/method.rst -- template for class methods

The following variables available in the templates:

sphinx.ext.autosummary.name
Name of the documented object, excluding the module and class parts.

sphinx.ext.autosummary.objname
Name of the documented object, excluding the module parts.

sphinx.ext.autosummary.fullname
Full name of the documented object, including module and class parts.

sphinx.ext.autosummary.module
Name of the module the documented object belongs to.

sphinx.ext.autosummary.class
Name of the class the documented object belongs to. Only available for methods and attributes.

sphinx.ext.autosummary.underline
A string containing len(full_name) * '='.

sphinx.ext.autosummary.members
List containing names of all members of the module or class. Only available for modules and classes.

sphinx.ext.autosummary.functions
List containing names of "public" functions in the module. Here, "public" here means that the name does not start
with an underscore. Only available for modules.

sphinx.ext.autosummary.classes
List containing names of "public" classes in the module. Only available for modules.

sphinx.ext.autosummary.exceptions
List containing names of "public" exceptions in the module. Only available for modules.

sphinx.ext.autosummary.methods
List containing names of "public" methods in the class. Only available for classes.

sphinx.ext.autosummary.attributes
List containing names of "public" attributes in the class. Only available for classes.

Note

You can use the autosummary directive in the stub pages. Stub pages are generated also based on these
directives.

sphinx.ext.doctest -- Test snippets in the documentation

This extension allows you to test snippets in the documentation in a natural way. It works by collecting
specially-marked up code blocks and running them as doctest tests.

Within one document, test code is partitioned in groups, where each group consists of:

• zero or more setup code blocks (e.g. importing the module to test)

• one or more test blocks

When building the docs with the doctest builder, groups are collected for each document and run one after the
other, first executing setup code blocks, then the test blocks in the order they appear in the file.

There are two kinds of test blocks:

• doctest-style blocks mimic interactive sessions by interleaving Python code (including the interpreter prompt)
and output.

• code-output-style blocks consist of an ordinary piece of Python code, and optionally, a piece of output for that
code.

The doctest extension provides four directives. The group argument is interpreted as follows: if it is empty, the block
is assigned to the group named default. If it is *, the block is assigned to all groups (including the default
group). Otherwise, it must be a comma-separated list of group names.

.. testsetup:: [group]
A setup code block. This code is not shown in the output for other builders, but executed before the doctests of
the group(s) it belongs to.

.. doctest:: [group]
A doctest-style code block. You can use standard doctest flags for controlling how actual output is compared
with what you give as output. By default, these options are enabled: ELLIPSIS (allowing you to put ellipses in
the expected output that match anything in the actual output), IGNORE_EXCEPTION_DETAIL (not comparing
tracebacks), DONT_ACCEPT_TRUE_FOR_1 (by default, doctest accepts "True" in the output where "1" is given --
this is a relic of pre-Python 2.2 times).
This directive supports two options:

• hide, a flag option, hides the doctest block in other builders. By default it is shown as a highlighted doctest
block.

• options, a string option, can be used to give a comma-separated list of doctest flags that apply to each
example in the tests. (You still can give explicit flags per example, with doctest comments, but they will show
up in other builders too.)

Note that like with standard doctests, you have to use <BLANKLINE> to signal a blank line in the expected
output. The <BLANKLINE> is removed when building presentation output (HTML, LaTeX etc.).
Also, you can give inline doctest options, like in doctest:

>>> datetime.date.now() # doctest: +SKIP
datetime.date(2008, 1, 1)

They will be respected when the test is run, but stripped from presentation output.

.. testcode:: [group]
A code block for a code-output-style test.
This directive supports one option:

• hide, a flag option, hides the code block in other builders. By default it is shown as a highlighted code
block.

Note
Code in a testcode block is always executed all at once, no matter how many statements it contains.
Therefore, output will not be generated for bare expressions -- use print. Example:

.. testcode::

 1+1 # this will give no output!
 print 2+2 # this will give output

.. testoutput::

 4

Also, please be aware that since the doctest module does not support mixing regular output and an exception
message in the same snippet, this applies to testcode/testoutput as well.

.. testoutput:: [group]
The corresponding output, or the exception message, for the last testcode block.
This directive supports two options:

• hide, a flag option, hides the output block in other builders. By default it is shown as a literal block without
highlighting.

• options, a string option, can be used to give doctest flags (comma-separated) just like in normal doctest
blocks.

Example:

.. testcode::

 print 'Output text.'

.. testoutput::
 :hide:
 :options: -ELLIPSIS, +NORMALIZE_WHITESPACE

 Output text.

The following is an example for the usage of the directives. The test via doctest and the test via testcode and
testoutput are equivalent.

The parrot module
=================

.. testsetup:: *

 import parrot

The parrot module is a module about parrots.

Doctest example:

.. doctest::

 >>> parrot.voom(3000)
 This parrot wouldn't voom if you put 3000 volts through it!

Test-Output example:

.. testcode::

 parrot.voom(3000)

This would output:

.. testoutput::

 This parrot wouldn't voom if you put 3000 volts through it!

There are also these config values for customizing the doctest extension:

doctest_path
A list of directories that will be added to sys.path when the doctest builder is used. (Make sure it contains
absolute paths.)

doctest_global_setup
Python code that is treated like it were put in a testsetup directive for every file that is tested, and for every
group. You can use this to e.g. import modules you will always need in your doctests.
New in version 0.6.

doctest_test_doctest_blocks
If this is a nonempty string (the default is 'default'), standard reST doctest blocks will be tested too. They will
be assigned to the group name given.
reST doctest blocks are simply doctests put into a paragraph of their own, like so:

Some documentation text.

>>> print 1
1

Some more documentation text.

(Note that no special :: is needed to introduce the block; docutils recognizes it from the leading >>>. Also, no
additional indentation is necessary, though it doesn't hurt.)
If this value is left at its default value, the above snippet is interpreted by the doctest builder exactly like the
following:

Some documentation text.

.. doctest::

 >>> print 1
 1

Some more documentation text.

This feature makes it easy for you to test doctests in docstrings included with the autodoc extension without
marking them up with a special directive.
Note though that you can't have blank lines in reST doctest blocks. They will be interpreted as one block ending
and another one starting. Also, removal of <BLANKLINE> and # doctest: options only works in doctest
blocks.

sphinx.ext.intersphinx -- Link to other projects' documentation

New in version 0.5.

This extension can generate automatic links to the documentation of Python objects in other projects. This works as
follows:

• Each Sphinx HTML build creates a file named objects.inv that contains a mapping from Python identifiers
to URIs relative to the HTML set's root.

• Projects using the Intersphinx extension can specify the location of such mapping files in the
intersphinx_mapping config value. The mapping will then be used to resolve otherwise missing
references to Python objects into links to the other documentation.

• By default, the mapping file is assumed to be at the same location as the rest of the documentation; however,
the location of the mapping file can also be specified individually, e.g. if the docs should be buildable without
Internet access.

To use intersphinx linking, add 'sphinx.ext.intersphinx' to your extensions config value, and use these
new config values to activate linking:

intersphinx_mapping
A dictionary mapping URIs to either None or an URI. The keys are the base URI of the foreign Sphinx
documentation sets and can be local paths or HTTP URIs. The values indicate where the inventory file can be
found: they can be None (at the same location as the base URI) or another local or HTTP URI.
Relative local paths in the keys are taken as relative to the base of the built documentation, while relative local
paths in the values are taken as relative to the source directory.
An example, to add links to modules and objects in the Python standard library documentation:

intersphinx_mapping = {'http://docs.python.org/dev': None}

This will download the corresponding objects.inv file from the Internet and generate links to the pages under
the given URI. The downloaded inventory is cached in the Sphinx environment, so it must be redownloaded
whenever you do a full rebuild.
A second example, showing the meaning of a non-None value:

intersphinx_mapping = {'http://docs.python.org/dev': 'python-inv.txt'}

This will read the inventory from python.inv in the source directory, but still generate links to the pages under
http://docs.python.org/dev. It is up to you to update the inventory file as new objects are added to the
Python documentation.
When fetching remote inventory files, proxy settings will be read from the $HTTP_PROXY environment variable.

intersphinx_cache_limit
The maximum number of days to cache remote inventories. The default is 5, meaning five days. Set this to a
negative value to cache inventories for unlimited time.

Math support in Sphinx

New in version 0.5.

Since mathematical notation isn't natively supported by HTML in any way, Sphinx supports math in documentation
with two extensions.

The basic math support that is common to both extensions is contained in sphinx.ext.mathbase. Other math
support extensions should, if possible, reuse that support too.

Note

sphinx.ext.mathbase is not meant to be added to the extensions config value, instead, use either
sphinx.ext.pngmath or sphinx.ext.jsmath as described below.

The input language for mathematics is LaTeX markup. This is the de-facto standard for plain-text math notation and
has the added advantage that no further translation is necessary when building LaTeX output.

mathbase defines these new markup elements:

:math:
Role for inline math. Use like this:

Since Pythagoras, we know that :math:`a^2 + b^2 = c^2`.

.. math::
Directive for displayed math (math that takes the whole line for itself).
The directive supports multiple equations, which should be separated by a blank line:

.. math::

 (a + b)^2 = a^2 + 2ab + b^2

 (a - b)^2 = a^2 - 2ab + b^2

In addition, each single equation is set within a split environment, which means that you can have multiple
aligned lines in an equation, aligned at & and separated by \\:

.. math::

 (a + b)^2 &= (a + b)(a + b) \\
 &= a^2 + 2ab + b^2

For more details, look into the documentation of the AmSMath LaTeX package.
When the math is only one line of text, it can also be given as a directive argument:

.. math:: (a + b)^2 = a^2 + 2ab + b^2

Normally, equations are not numbered. If you want your equation to get a number, use the label option. When
given, it selects a label for the equation, by which it can be cross-referenced, and causes an equation number to
be issued. See eqref for an example. The numbering style depends on the output format.
There is also an option nowrap that prevents any wrapping of the given math in a math environment. When you
give this option, you must make sure yourself that the math is properly set up. For example:

.. math::
 :nowrap:

 \begin{eqnarray}
 y & = & ax^2 + bx + c \\
 f(x) & = & x^2 + 2xy + y^2
 \end{eqnarray}

:eq:
Role for cross-referencing equations via their label. This currently works only within the same document. Example:

.. math:: e^{i\pi} + 1 = 0
 :label: euler

Euler's identity, equation :eq:`euler`, was elected one of the most
beautiful mathematical formulas.

sphinx.ext.pngmath -- Render math as PNG images

This extension renders math via LaTeX and dvipng into PNG images. This of course means that the computer
where the docs are built must have both programs available.

There are various config values you can set to influence how the images are built:

pngmath_latex
The command name with which to invoke LaTeX. The default is 'latex'; you may need to set this to a full path if
latex is not in the executable search path.
Since this setting is not portable from system to system, it is normally not useful to set it in conf.py; rather, giving
it on the sphinx-build command line via the -D option should be preferable, like this:

sphinx-build -b html -D pngmath_latex=C:\tex\latex.exe . _build/html

Changed in version 0.5.1: This value should only contain the path to the latex executable, not further arguments;
use pngmath_latex_args for that purpose.

pngmath_dvipng
The command name with which to invoke dvipng. The default is 'dvipng'; you may need to set this to a full
path if dvipng is not in the executable search path.

pngmath_latex_args
Additional arguments to give to latex, as a list. The default is an empty list.
New in version 0.5.1.

pngmath_latex_preamble
Additional LaTeX code to put into the preamble of the short LaTeX files that are used to translate the math
snippets. This is empty by default. Use it e.g. to add more packages whose commands you want to use in the

http://www.ams.org/tex/amslatex.html
http://savannah.nongnu.org/projects/dvipng/

math.

pngmath_dvipng_args
Additional arguments to give to dvipng, as a list. The default value is ['-gamma 1.5', '-D 110'] which
makes the image a bit darker and larger then it is by default.
An arguments you might want to add here is e.g. '-bg Transparent', which produces PNGs with a
transparent background. This is not enabled by default because some Internet Explorer versions don't like
transparent PNGs.

Note
When you "add" an argument, you need to reproduce the default arguments if you want to keep them; that is,
like this:

pngmath_dvipng_args = ['-gamma 1.5', '-D 110', '-bg Transparent']

pngmath_use_preview
dvipng has the ability to determine the "depth" of the rendered text: for example, when typesetting a fraction
inline, the baseline of surrounding text should not be flush with the bottom of the image, rather the image should
extend a bit below the baseline. This is what TeX calls "depth". When this is enabled, the images put into the
HTML document will get a vertical-align style that correctly aligns the baselines.
Unfortunately, this only works when the preview-latex package is installed. Therefore, the default for this option is
False.

sphinx.ext.jsmath -- Render math via JavaScript

This extension puts math as-is into the HTML files. The JavaScript package jsMath is then loaded and transforms
the LaTeX markup to readable math live in the browser.

Because jsMath (and the necessary fonts) is very large, it is not included in Sphinx. You must install it yourself, and
give Sphinx its path in this config value:

jsmath_path
The path to the JavaScript file to include in the HTML files in order to load JSMath. There is no default.
The path can be absolute or relative; if it is relative, it is relative to the _static directory of the built docs.
For example, if you put JSMath into the static path of the Sphinx docs, this value would be
jsMath/easy/load.js. If you host more than one Sphinx documentation set on one server, it is advisable to
install jsMath in a shared location.

sphinx.ext.graphviz -- Add Graphviz graphs

New in version 0.6.

This extension allows you to embed Graphviz graphs in your documents.

It adds these directives:

.. graphviz::
Directive to embed graphviz code. The input code for dot is given as the content. For example:

.. graphviz::

 digraph foo {
 "bar" -> "baz";
 }

In HTML output, the code will be rendered to a PNG image. In LaTeX output, the code will be rendered to an
embeddable PDF file.

.. graph::
Directive for embedding a single undirected graph. The name is given as a directive argument, the contents of the
graph are the directive content. This is a convenience directive to generate graph <name> { <content> }.
For example:

http://www.gnu.org/software/auctex/preview-latex.html
http://www.math.union.edu/~dpvc/jsmath/
http://graphviz.org/

.. graph:: foo

 "bar" -- "baz";

.. digraph::
Directive for embedding a single directed graph. The name is given as a directive argument, the contents of the
graph are the directive content. This is a convenience directive to generate digraph <name> { <content> }.
For example:

.. digraph:: foo

 "bar" -> "baz" -> "quux";

There are also these new config values:

graphviz_dot
The command name with which to invoke dot. The default is 'dot'; you may need to set this to a full path if
dot is not in the executable search path.
Since this setting is not portable from system to system, it is normally not useful to set it in conf.py; rather, giving
it on the sphinx-build command line via the -D option should be preferable, like this:

sphinx-build -b html -D graphviz_dot=C:\graphviz\bin\dot.exe . _build/html

graphviz_dot_args
Additional command-line arguments to give to dot, as a list. The default is an empty list. This is the right place to
set global graph, node or edge attributes via dot's -G, -N and -E options.

sphinx.ext.inheritance_diagram -- Include inheritance diagrams

New in version 0.6.

This extension allows you to include inheritance diagrams, rendered via the Graphviz extension.

It adds this directive:

.. inheritance-diagram::
This directive has one or more arguments, each giving a module or class name. Class names can be unqualified;
in that case they are taken to exist in the currently described module (see module).
For each given class, and each class in each given module, the base classes are determined. Then, from all
classes and their base classes, a graph is generated which is then rendered via the graphviz extension to a
directed graph.
This directive supports an option called parts that, if given, must be an integer, advising the directive to remove
that many parts of module names from the displayed names. (For example, if all your class names start with
lib., you can give :parts: 1 to remove that prefix from the displayed node names.)

New config values are:

inheritance_graph_attrs
A dictionary of graphviz graph attributes for inheritance diagrams.
For example:

inheritance_graph_attrs = dict(rankdir="LR", size='"6.0, 8.0"',
 fontsize=14, ratio='compress')

inheritance_node_attrs
A dictionary of graphviz node attributes for inheritance diagrams.
For example:

inheritance_node_attrs = dict(shape='ellipse', fontsize=14, height=0.75,
 color='dodgerblue1', style='filled')

inheritance_edge_attrs

A dictionary of graphviz edge attributes for inheritance diagrams.

sphinx.ext.refcounting -- Keep track of reference counting behavior

Todo

Write this section.

sphinx.ext.ifconfig -- Include content based on configuration

This extension is quite simple, and features only one directive:

.. ifconfig::
Include content of the directive only if the Python expression given as an argument is True, evaluated in the
namespace of the project's configuration (that is, all registered variables from conf.py are available).
For example, one could write

.. ifconfig:: releaselevel in ('alpha', 'beta', 'rc')

 This stuff is only included in the built docs for unstable versions.

To make a custom config value known to Sphinx, use add_config_value() in the setup function in conf.py,
e.g.:

def setup(app):
 app.add_config_value('releaselevel', '', True)

The second argument is the default value, the third should always be True for such values (it selects if Sphinx
re-reads the documents if the value changes).

sphinx.ext.coverage -- Collect doc coverage stats

This extension features one additional builder, the CoverageBuilder.

class sphinx.ext.coverage.CoverageBuilder
To use this builder, activate the coverage extension in your configuration file and give -b coverage on the
command line.

Todo

Write this section.

Several new configuration values can be used to specify what the builder should check:

coverage_ignore_modules

coverage_ignore_functions

coverage_ignore_classes

coverage_c_path

coverage_c_regexes

coverage_ignore_c_items

sphinx.ext.todo -- Support for todo items

Module author: Daniel Bültmann

New in version 0.5.

There are two additional directives when using this extension:

.. todo::
Use this directive like, for example, note.
It will only show up in the output if todo_include_todos is true.

.. todolist::
This directive is replaced by a list of all todo directives in the whole documentation, if todo_include_todos is
true.

There is also an additional config value:

todo_include_todos
If this is True, todo and todolist produce output, else they produce nothing. The default is False.

Third-party extensions
There are several extensions that are not (yet) maintained in the Sphinx distribution. The Wiki at BitBucket maintains
a list of those.

If you write an extension that you think others will find useful, please write to the project mailing list (join here) and
we'll find the proper way of including or hosting it for the public.

Where to put your own extensions?

Extensions local to a project should be put within the project's directory structure. Set Python's module search path,
sys.path, accordingly so that Sphinx can find them. E.g., if your extension foo.py lies in the exts subdirectory
of the project root, put into conf.py:

import sys, os

sys.path.append(os.path.abspath('exts'))

extensions = ['foo']

You can also install extensions anywhere else on sys.path, e.g. in the site-packages directory.

Sphinx FAQ
This is a list of Frequently Asked Questions about Sphinx. Feel free to suggest new entries!

How do I...
... create PDF files without LaTeX?

You can use rst2pdf version 0.12 or greater which comes with built-in Sphinx integration. See the Available
builders section for details.

... get section numbers?
They are automatic in LaTeX output; for HTML, give a :numbered: option to the toctree directive where you
want to start numbering.

... customize the look of the built HTML files?
Use themes, see HTML theming support.

... add global substitutions or includes?
Add them in the rst_epilog config value.

... write my own extension?
See the extension tutorial.

... convert from my existing docs using MoinMoin markup?
The easiest way is to convert to xhtml, then convert xhtml to reST. You'll still need to mark up classes and such,
but the headings and code examples come through cleanly.

Using Sphinx with...
Epydoc

There's a third-party extension providing an api role which refers to Epydoc's API docs for a given identifier.

http://www.bitbucket.org/birkenfeld/sphinx/wiki/Home
http://groups.google.com/group/sphinx-dev
http://rst2pdf.googlecode.com
http://docutils.sourceforge.net/sandbox/xhtml2rest/xhtml2rest.py
http://git.savannah.gnu.org/cgit/kenozooid.git/tree/doc/extapi.py

Doxygen
Michael Jones is developing a reST/Sphinx bridge to doxygen called breathe.

SCons
Glenn Hutchings has written a SCons build script to build Sphinx documentation; it is hosted here:
http://bitbucket.org/zondo/sphinx-scons

github pages
You can use Michael Jones' sphinx-to-github tool to prepare Sphinx HTML output.

Google Analytics
You can use a custom layout.html template, like this:

{% extends "!layout.html" %}

{%- block extrahead %}
{{ super() }}
<script type="text/javascript">
 var _gaq = _gaq || [];
 _gaq.push(['_setAccount', 'XXX account number XXX']);
 _gaq.push(['_trackPageview']);
</script>
{% endblock %}

{% block footer %}
{{ super() }}
<div class="footer">This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.
<script type="text/javascript">
 (function() {
 var ga = document.createElement('script');
 ga.src = ('https:' == document.location.protocol ?
 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
 ga.setAttribute('async', 'true');
 document.documentElement.firstChild.appendChild(ga);
 })();
</script>
</div>
{% endblock %}

Glossary
builder

A class (inheriting from Builder) that takes parsed documents and performs an action on them. Normally,
builders translate the documents to an output format, but it is also possible to use the builder builders that e.g.
check for broken links in the documentation, or build coverage information.
See Available builders for an overview over Sphinx' built-in builders.

configuration directory
The directory containing conf.py. By default, this is the same as the source directory, but can be set differently
with the -c command-line option.

description unit
The basic building block of Sphinx documentation. Every "description directive" (e.g. function or describe)
creates such a unit; and most units can be cross-referenced to.

environment
A structure where information about all documents under the root is saved, and used for cross-referencing. The
environment is pickled after the parsing stage, so that successive runs only need to read and parse new and
changed documents.

source directory
The directory which, including its subdirectories, contains all source files for one Sphinx project.

http://github.com/michaeljones/breathe/tree/master
http://bitbucket.org/zondo/sphinx-scons
http://github.com/michaeljones/sphinx-to-github/tree/master

Changes in Sphinx

Release 0.6.4 (Jan 12, 2010)

• Improve the handling of non-Unicode strings in the configuration.

• #316: Catch OSErrors occurring when calling graphviz with arguments it doesn't understand.

• Restore compatibility with Pygments >= 1.2.

• #295: Fix escaping of hyperref targets in LaTeX output.

• #302: Fix links generated by the :doc: role for LaTeX output.

• #286: collect todo nodes after the whole document has been read; this allows placing substitution references
in todo items.

• #294: do not ignore an explicit today config value in a LaTeX build.

• The alt text of inheritance diagrams is now much cleaner.

• Ignore images in section titles when generating link captions.

• #310: support exception messages in the testoutput blocks of the doctest extension.

• #293: line blocks are styled properly in HTML output.

• #285: make the locale_dirs config value work again.

• #303: html_context values given on the command line via -A should not override other values given in
conf.py.

• Fix a bug preventing incremental rebuilds for the dirhtml builder.

• #299: Fix the mangling of quotes in some literal blocks.

• #292: Fix path to the search index for the dirhtml builder.

• Fix a Jython compatibility issue: make the dependence on the parser module optional.

• #238: In autodoc, catch all errors that occur on module import, not just ImportError.

• Fix the handling of non-data, but non-method descriptors in autodoc.

• When copying file times, ignore OSErrors raised by os.utime().

Release 0.6.3 (Sep 03, 2009)

• Properly add C module filenames as dependencies in autodoc.

• #253: Ignore graphviz directives without content instead of raising an unhandled exception.

• #241: Fix a crash building LaTeX output for documents that contain a todolist directive.

• #252: Make it easier to change the build dir in the Makefiles generated by quickstart.

• #220: Fix CSS so that displaymath really is centered.

• #222: Allow the "Footnotes" header to be translated.

• #225: Don't add whitespace in generated HTML after inline tags.

• #227: Make literalinclude work when the document's path name contains non-ASCII characters.

• #229: Fix autodoc failures with members that raise errors on getattr().

• #205: When copying files, don't copy full stat info, only modification times.

• #232: Support non-ASCII metadata in Qt help builder.

• Properly format bullet lists nested in definition lists for LaTeX.

• Section titles are now allowed inside only directives.

• #201: Make centered directive work in LaTeX output.

• #206: Refuse to overwrite an existing master document in sphinx-quickstart.

• #208: Use MS-sanctioned locale settings, determined by the language config option, in the HTML help
builder.

• #210: Fix nesting of HTML tags for displayed math from pngmath extension.

• #213: Fix centering of images in LaTeX output.

• #211: Fix compatibility with docutils 0.5.

Release 0.6.2 (Jun 16, 2009)

• #130: Fix obscure IndexError in doctest extension.

• #167: Make glossary sorting case-independent.

• #196: Add a warning if an extension module doesn't have a setup() function.

• #158: Allow '..' in template names, and absolute template paths; Jinja 2 by default disables both.

• When highlighting Python code, ignore extra indentation before trying to parse it as Python.

• #191: Don't escape the tilde in URIs in LaTeX.

• Don't consider contents of source comments for the search index.

• Set the default encoding to utf-8-sig to handle files with a UTF-8 BOM correctly.

• #178: apply add_function_parentheses config value to C functions as promised.

• #173: Respect the docutils title directive.

• #172: The obj role now links to modules as promised.

• #19: Tables now can have a "longtable" class, in order to get correctly broken into pages in LaTeX output.

• Look for Sphinx message catalogs in the system default path before trying sphinx/locale.

• Fix the search for methods via "classname.methodname".

• #155: Fix Python 2.4 compatibility: exceptions are old-style classes there.

• #150: Fix display of the "sphinxdoc" theme on Internet Explorer versions 6 and 7.

• #146: Don't fail to generate LaTeX when the user has an active .docutils configuration.

• #29: Don't generate visible "-{-}" in option lists in LaTeX.

• Fix cross-reference roles when put into substitutions.

• Don't put image "alt" text into table-of-contents entries.

• In the LaTeX writer, do not raise an exception on too many section levels, just use the "subparagraph" level for
all of them.

• #145: Fix autodoc problem with automatic members that refuse to be getattr()'d from their parent.

• If specific filenames to build are given on the command line, check that they are within the source directory.

• Fix autodoc crash for objects without a __name__.

• Fix intersphinx for installations without urllib2.HTTPSHandler.

• #134: Fix pending_xref leftover nodes when using the todolist directive from the todo extension.

Release 0.6.1 (Mar 26, 2009)

• #135: Fix problems with LaTeX output and the graphviz extension.

• #132: Include the autosummary "module" template in the distribution.

Release 0.6 (Mar 24, 2009)

New features added

• Incompatible changes:

• Templating now requires the Jinja2 library, which is an enhanced version of the old Jinja1 engine. Since
the syntax and semantic is largely the same, very few fixes should be necessary in custom templates.

• The "document" div tag has been moved out of the layout.html template's "document" block,
because the closing tag was already outside. If you overwrite this block, you need to remove your
"document" div tag as well.

• The autodoc_skip_member event now also gets to decide whether to skip members whose name
starts with underscores. Previously, these members were always automatically skipped. Therefore, if
you handle this event, add something like this to your event handler to restore the old behavior:

if name.startswith('_'):
 return True

• Theming support, see the new section in the documentation.

• Markup:

• Due to popular demand, added a :doc: role which directly links to another document without the need
of creating a label to which a :ref: could link to.

• #4: Added a :download: role that marks a non-document file for inclusion into the HTML output and
links to it.

• Added an only directive that can selectively include text based on enabled "tags". Tags can be given
on the command line. Also, the current builder output format (e.g. "html" or "latex") is always a defined
tag.

• #10: Added HTML section numbers, enabled by giving a :numbered: flag to the toctree directive.

• #114: Added an abbr role to markup abbreviations and acronyms.

• The literalinclude directive now supports several more options, to include only parts of a file.

• The toctree directive now supports a :hidden: flag, which will prevent links from being generated
in place of the directive -- this allows you to define your document structure, but place the links yourself.

• #123: The glossary directive now supports a :sorted: flag that sorts glossary entries
alphabetically.

• Paths to images, literal include files and download files can now be absolute (like /images/foo.png).
They are treated as relative to the top source directory.

• #52: There is now a hlist directive, creating a compact list by placing distributing items into multiple
columns.

• #77: If a description environment with info field list only contains one :param: entry, no bullet list is
generated.

• #6: Don't generate redundant for top-level TOC tree items, which leads to a visual separation of
TOC entries.

• #23: Added a classmethod directive along with method and staticmethod.

• Scaled images now get a link to the unscaled version.

• SVG images are now supported in HTML (via <object> and <embed> tags).

• Added a toctree callable to the templates, and the ability to include external links in toctrees. The
'collapse' keyword argument indicates whether or not to only display subitems of the current page.
(Defaults to True.)

• Configuration:

• The new config value rst_epilog can contain reST that is appended to each source file that is read.
This is the right place for global substitutions.

• The new html_add_permalinks config value can be used to switch off the generated "paragraph
sign" permalinks for each heading and definition environment.

• The new html_show_sourcelink config value can be used to switch off the links to the reST sources
in the sidebar.

• The default value for htmlhelp_basename is now the project title, cleaned up as a filename.

• The new modindex_common_prefix config value can be used to ignore certain package names for
module index sorting.

• The new trim_footnote_reference_space config value mirrors the docutils config value of the
same name and removes the space before a footnote reference that is necessary for reST to recognize
the reference.

• The new latex_additional_files config value can be used to copy files (that Sphinx doesn't copy
automatically, e.g. if they are referenced in custom LaTeX added in latex_elements) to the build
directory.

• Builders:

• The HTML builder now stores a small file named .buildinfo in its output directory. It stores a hash of
config values that can be used to determine if a full rebuild needs to be done (e.g. after changing
html_theme).

• New builder for Qt help collections, by Antonio Valentino.

• The new DirectoryHTMLBuilder (short name dirhtml) creates a separate directory for every
page, and places the page there in a file called index.html. Therefore, page URLs and links don't
need to contain .html.

• The new html_link_suffix config value can be used to select the suffix of generated links between
HTML files.

• #96: The LaTeX builder now supports figures wrapped by text, when using the figwidth option and
right/left alignment.

• New translations:

• Italian by Sandro Dentella.

• Ukrainian by Petro Sasnyk.

• Finnish by Jukka Inkeri.

• Russian by Alexander Smishlajev.

• Extensions and API:

• New graphviz extension to embed graphviz graphs.

• New inheritance_diagram extension to embed... inheritance diagrams!

• New autosummary extension that generates summaries of modules and automatic documentation of
modules.

• Autodoc now has a reusable Python API, which can be used to create custom types of objects to
auto-document (e.g. Zope interfaces). See also Sphinx.add_autodocumenter().

• Autodoc now handles documented attributes.

• Autodoc now handles inner classes and their methods.

• Autodoc can document classes as functions now if explicitly marked with autofunction.

• Autodoc can now exclude single members from documentation via the exclude-members option.

• Autodoc can now order members either alphabetically (like previously) or by member type; configurable
either with the config value autodoc_member_order or a member-order option per directive.

• The function Sphinx.add_directive() now also supports docutils 0.5-style directive classes. If they
inherit from sphinx.util.compat.Directive, they also work with docutils 0.4.

• There is now a Sphinx.add_lexer() method to be able to use custom Pygments lexers easily.

• There is now Sphinx.add_generic_role() to mirror the docutils' own function.

• Other changes:

• Config overrides for single dict keys can now be given on the command line.

• There is now a doctest_global_setup config value that can be used to give setup code for all
doctests in the documentation.

• Source links in HTML are now generated with rel="nofollow".

• Quickstart can now generate a Windows make.bat file.

• #62: There is now a -w option for sphinx-build that writes warnings to a file, in addition to stderr.

• There is now a -W option for sphinx-build that turns warnings into errors.

Release 0.5.2 (Mar 24, 2009)

• Properly escape | in LaTeX output.

• #71: If a decoding error occurs in source files, print a warning and replace the characters by "?".

• Fix a problem in the HTML search if the index takes too long to load.

• Don't output system messages while resolving, because they would stay in the doctrees even if
keep_warnings is false.

• #82: Determine the correct path for dependencies noted by docutils. This fixes behavior where a source with
dependent files was always reported as changed.

• Recognize toctree directives that are not on section toplevel, but within block items, such as tables.

• Use a new RFC base URL, since rfc.org seems down.

• Fix a crash in the todolist directive when no todo items are defined.

• Don't call LaTeX or dvipng over and over again if it was not found once, and use text-only latex as a substitute
in that case.

• Fix problems with footnotes in the LaTeX output.

• Prevent double hyphens becoming en-dashes in literal code in the LaTeX output.

• Open literalinclude files in universal newline mode to allow arbitrary newline conventions.

• Actually make the -Q option work.

• #86: Fix explicit document titles in toctrees.

• #81: Write environment and search index in a manner that is safe from exceptions that occur during dumping.

• #80: Fix UnicodeErrors when a locale is set with setlocale().

Release 0.5.1 (Dec 15, 2008)

• #67: Output warnings about failed doctests in the doctest extension even when running in quiet mode.

• #72: In pngmath, make it possible to give a full path to LaTeX and dvipng on Windows. For that to work, the
pngmath_latex and pngmath_dvipng options are no longer split into command and additional arguments;
use pngmath_latex_args and pngmath_dvipng_args to give additional arguments.

• Don't crash on failing doctests with non-ASCII characters.

• Don't crash on writing status messages and warnings containing unencodable characters.

• Warn if a doctest extension block doesn't contain any code.

• Fix the handling of :param: and :type: doc fields when they contain markup (especially cross-referencing
roles).

• #65: Fix storage of depth information for PNGs generated by the pngmath extension.

• Fix autodoc crash when automethod is used outside a class context.

• #68: Fix LaTeX writer output for images with specified height.

• #60: Fix wrong generated image path when including images in sources in subdirectories.

• Fix the JavaScript search when html_copy_source is off.

• Fix an indentation problem in autodoc when documenting classes with the option autoclass_content =
"both" set.

• Don't crash on empty index entries, only emit a warning.

• Fix a typo in the search JavaScript code, leading to unusable search function in some setups.

Release 0.5 (Nov 23, 2008) -- Birthday release!

New features added

• Markup features:

• Citations are now global: all citation defined in any file can be referenced from any file. Citations are
collected in a bibliography for LaTeX output.

• Footnotes are now properly handled in the LaTeX builder: they appear at the location of the footnote
reference in text, not at the end of a section. Thanks to Andrew McNamara for the initial patch.

• "System Message" warnings are now automatically removed from the built documentation, and only
written to stderr. If you want the old behavior, set the new config value keep_warnings to True.

• Glossary entries are now automatically added to the index.

• Figures with captions can now be referred to like section titles, using the :ref: role without an explicit
link text.

• Added cmember role for consistency.

• Lists enumerated by letters or roman numerals are now handled like in standard reST.

• The seealso directive can now also be given arguments, as a short form.

• You can now document several programs and their options with the new program directive.

• HTML output and templates:

• Incompatible change: The "root" relation link (top left in the relbar) now points to the master_doc by
default, no longer to a document called "index". The old behavior, while useful in some situations, was
somewhat unexpected. Override the "rootrellink" block in the template to customize where it refers to.

• The JavaScript search now searches for objects before searching in the full text.

• TOC tree entries now have CSS classes that make it possible to style them depending on their depth.

• Highlighted code blocks now have CSS classes that make it possible to style them depending on their
language.

• HTML <meta> tags via the docutils meta directive are now supported.

• SerializingHTMLBuilder was added as new abstract builder that can be subclassed to serialize
build HTML in a specific format. The PickleHTMLBuilder is a concrete subclass of it that uses pickle
as serialization implementation.

• JSONHTMLBuilder was added as another SerializingHTMLBuilder subclass that dumps the
generated HTML into JSON files for further processing.

• The rellinks block in the layout template is now called linktags to avoid confusion with the relbar
links.

• The HTML builders have two additional attributes now that can be used to disable the anchor-link
creation after headlines and definition links.

• Only generate a module index if there are some modules in the documentation.

• New and changed config values:

• Added support for internationalization in generated text with the language and locale_dirs config
values. Many thanks to language contributors:

• Horst Gutmann -- German

• Pavel Kosina -- Czech

• David Larlet -- French

• Micha■ Kandulski -- Polish

• Yasushi Masuda -- Japanese

• Guillem Borrell -- Spanish

• Luc Saffre and Peter Bertels -- Dutch

• Fred Lin -- Traditional Chinese

• Roger Demetrescu -- Brazilian Portuguese

• Rok Garbas -- Slovenian

• The new config value highlight_language set a global default for highlighting. When 'python3'
is selected, console output blocks are recognized like for 'python'.

• Exposed Pygments' lexer guessing as a highlight "language" guess.

• The new config value latex_elements allows to override all LaTeX snippets that Sphinx puts into the
generated .tex file by default.

• Added exclude_dirnames config value that can be used to exclude e.g. CVS directories from source
file search.

• Added source_encoding config value to select input encoding.

• Extensions:

• The new extensions sphinx.ext.jsmath and sphinx.ext.pngmath provide math support for
both HTML and LaTeX builders.

• The new extension sphinx.ext.intersphinx half-automatically creates links to Sphinx
documentation of Python objects in other projects.

• The new extension sphinx.ext.todo allows the insertion of "To do" directives whose visibility in the
output can be toggled. It also adds a directive to compile a list of all todo items.

• sphinx.ext.autodoc has a new event autodoc-process-signature that allows tuning function
signature introspection.

• sphinx.ext.autodoc has a new event autodoc-skip-member that allows tuning which members are
included in the generated content.

• Respect __all__ when autodocumenting module members.

• The automodule directive now supports the synopsis, deprecated and platform options.

• Extension API:

• Sphinx.add_node() now takes optional visitor methods for the HTML, LaTeX and text translators; this
prevents having to manually patch the classes.

• Added Sphinx.add_javascript() that adds scripts to load in the default HTML template.

• Added new events: source-read, env-updated, env-purge-doc, missing-reference,
build-finished.

• Other changes:

• Added a command-line switch -Q: it will suppress warnings.

• Added a command-line switch -A: it can be used to supply additional values into the HTML templates.

• Added a command-line switch -C: if it is given, no configuration file conf.py is required.

• Added a distutils command build_sphinx: When Sphinx is installed, you can call python setup.py
build_sphinx for projects that have Sphinx documentation, which will build the docs and place them
in the standard distutils build directory.

• In quickstart, if the selected root path already contains a Sphinx project, complain and abort.

Bugs fixed

• #51: Escape configuration values placed in HTML templates.

• #44: Fix small problems in HTML help index generation.

• Fix LaTeX output for line blocks in tables.

• #38: Fix "illegal unit" error when using pixel image widths/heights.

• Support table captions in LaTeX output.

• #39: Work around a bug in Jinja that caused "<generator ...>" to be emitted in HTML output.

• Fix a problem with module links not being generated in LaTeX output.

• Fix the handling of images in different directories.

• #29: Support option lists in the text writer. Make sure that dashes introducing long option names are not
contracted to en-dashes.

• Support the "scale" option for images in HTML output.

• #25: Properly escape quotes in HTML help attribute values.

• Fix LaTeX build for some description environments with :noindex:.

• #24: Don't crash on uncommon casing of role names (like :Class:).

• Only output ANSI colors on color terminals.

• Update to newest fncychap.sty, to fix problems with non-ASCII characters at the start of chapter titles.

• Fix a problem with index generation in LaTeX output, caused by hyperref not being included last.

• Don't disregard return annotations for functions without any parameters.

• Don't throw away labels for code blocks.

Release 0.4.3 (Oct 8, 2008)

• Fix a bug in autodoc with directly given autodoc members.

• Fix a bug in autodoc that would import a module twice, once as "module", once as "module.".

• Fix a bug in the HTML writer that created duplicate id attributes for section titles with docutils 0.5.

• Properly call super() in overridden blocks in templates.

• Add a fix when using XeTeX.

• Unify handling of LaTeX escaping.

• Rebuild everything when the extensions config value changes.

• Don't try to remove a nonexisting static directory.

• Fix an indentation problem in production lists.

• Fix encoding handling for literal include files: literalinclude now has an encoding option that defaults
to UTF-8.

• Fix the handling of non-ASCII characters entered in quickstart.

• Fix a crash with nonexisting image URIs.

Release 0.4.2 (Jul 29, 2008)

• Fix rendering of the samp role in HTML.

• Fix a bug with LaTeX links to headings leading to a wrong page.

• Reread documents with globbed toctrees when source files are added or removed.

• Add a missing parameter to PickleHTMLBuilder.handle_page().

• Put inheritance info always on its own line.

• Don't automatically enclose code with whitespace in it in quotes; only do this for the samp role.

• autodoc now emits a more precise error message when a module can't be imported or an attribute can't be
found.

• The JavaScript search now uses the correct file name suffix when referring to found items.

• The automodule directive now accepts the inherited-members and show-inheritance options again.

• You can now rebuild the docs normally after relocating the source and/or doctree directory.

Release 0.4.1 (Jul 5, 2008)

• Added sub-/superscript node handling to TextBuilder.

• Label names in references are now case-insensitive, since reST label names are always lowercased.

• Fix linkcheck builder crash for malformed URLs.

• Add compatibility for admonitions and docutils 0.5.

• Remove the silly restriction on "rubric" in the LaTeX writer: you can now write arbitrary "rubric" directives, and
only those with a title of "Footnotes" will be ignored.

• Copy the HTML logo to the output _static directory.

• Fix LaTeX code for modules with underscores in names and platforms.

• Fix a crash with nonlocal image URIs.

• Allow the usage of :noindex: in automodule directives, as documented.

• Fix the delete() docstring processor function in autodoc.

• Fix warning message for nonexisting images.

• Fix JavaScript search in Internet Explorer.

Release 0.4 (Jun 23, 2008)

New features added

• tocdepth can be given as a file-wide metadata entry, and specifies the maximum depth of a TOC of this file.

• The new config value default_role can be used to select the default role for all documents.

• Sphinx now interprets field lists with fields like :param foo: in description units.

• The new staticmethod directive can be used to mark methods as static methods.

• HTML output:

• The "previous" and "next" links have a more logical structure, so that by following "next" links you can
traverse the entire TOC tree.

• The new event html-page-context can be used to include custom values into the context used when
rendering an HTML template.

• Document metadata is now in the default template context, under the name metadata.

• The new config value html_favicon can be used to set a favicon for the HTML output. Thanks to
Sebastian Wiesner.

• The new config value html_use_index can be used to switch index generation in HTML documents off.

• The new config value html_split_index can be used to create separate index pages for each letter, to be
used when the complete index is too large for one page.

• The new config value html_short_title can be used to set a shorter title for the documentation which is
then used in the navigation bar.

• The new config value html_show_sphinx can be used to control whether a link to Sphinx is added to the
HTML footer.

• The new config value html_file_suffix can be used to set the HTML file suffix to e.g. .xhtml.

• The directories in the html_static_path can now contain subdirectories.

• The module index now isn't collapsed if the number of submodules is larger than the number of toplevel
modules.

• The image directive now supports specifying the extension as .*, which makes the builder select the one that
matches best. Thanks to Sebastian Wiesner.

• The new config value exclude_trees can be used to exclude whole subtrees from the search for source files.

• Defaults for configuration values can now be callables, which allows dynamic defaults.

• The new TextBuilder creates plain-text output.

• Python 3-style signatures, giving a return annotation via ->, are now supported.

• Extensions:

• The autodoc extension now offers a much more flexible way to manipulate docstrings before including
them into the output, via the new autodoc-process-docstring event.

• The autodoc extension accepts signatures for functions, methods and classes now that override the
signature got via introspection from Python code.

• The autodoc extension now offers a show-inheritance option for autoclass that inserts a list of
bases after the signature.

• The autodoc directives now support the noindex flag option.

Bugs fixed

• Correctly report the source location for docstrings included with autodoc.

• Fix the LaTeX output of description units with multiple signatures.

• Handle the figure directive in LaTeX output.

• Handle raw admonitions in LaTeX output.

• Fix determination of the title in HTML help output.

• Handle project names containing spaces.

• Don't write SSI-like comments in HTML output.

• Rename the "sidebar" class to "sphinxsidebar" in order to stay different from reST sidebars.

• Use a binary TOC in HTML help generation to fix issues links without explicit anchors.

• Fix behavior of references to functions/methods with an explicit title.

• Support citation, subscript and superscript nodes in LaTeX writer.

• Provide the standard "class" directive as "cssclass"; else it is shadowed by the Sphinx-defined directive.

• Fix the handling of explicit module names given to autoclass directives. They now show up with the correct
module name in the generated docs.

• Enable autodoc to process Unicode docstrings.

• The LaTeX writer now translates line blocks with \raggedright, which plays nicer with tables.

• Fix bug with directories in the HTML builder static path.

Release 0.3 (May 6, 2008)

New features added

• The toctree directive now supports a glob option that allows glob-style entries in the content.

• If the pygments_style config value contains a dot it's treated as the import path of a custom Pygments style
class.

• A new config value, exclude_dirs, can be used to exclude whole directories from the search for source files.

• The configuration directory (containing conf.py) can now be set independently from the source directory. For
that, a new command-line option -c has been added.

• A new directive tabularcolumns can be used to give a tabular column specification for LaTeX output.
Tables now use the tabulary package. Literal blocks can now be placed in tables, with several caveats.

• A new config value, latex_use_parts, can be used to enable parts in LaTeX documents.

• Autodoc now skips inherited members for classes, unless you give the new inherited-members option.

• A new config value, autoclass_content, selects if the docstring of the class' __init__ method is added to the
directive's body.

• Support for C++ class names (in the style Class::Function) in C function descriptions.

• Support for a toctree_only item in items for the latex_documents config value. This only includes the
documents referenced by TOC trees in the output, not the rest of the file containing the directive.

Bugs fixed

• sphinx.htmlwriter: Correctly write the TOC file for any structure of the master document. Also encode
non-ASCII characters as entities in TOC and index file. Remove two remaining instances of hard-coded
"documentation".

• sphinx.ext.autodoc: descriptors are detected properly now.

• sphinx.latexwriter: implement all reST admonitions, not just note and warning.

• Lots of little fixes to the LaTeX output and style.

• Fix OpenSearch template and make template URL absolute. The html_use_opensearch config value now
must give the base URL.

• Some unused files are now stripped from the HTML help file build.

Release 0.2 (Apr 27, 2008)

Incompatible changes

• Jinja, the template engine used for the default HTML templates, is now no longer shipped with Sphinx. If it is
not installed automatically for you (it is now listed as a dependency in setup.py), install it manually from
PyPI. This will also be needed if you're using Sphinx from a SVN checkout; in that case please also remove
the sphinx/jinja directory that may be left over from old revisions.

• The clumsy handling of the index.html template was removed. The config value html_index is gone,
and html_additional_pages should be used instead. If you need it, the old index.html template is still
there, called defindex.html, and you can port your html_index template, using Jinja inheritance, by
changing your template:

{% extends "defindex.html" %}
{% block tables %}
... old html_index template content ...
{% endblock %}

and putting 'index': name of your template in html_additional_pages.

• In the layout template, redundant blocks were removed; you should use Jinja's standard {{ super() }}
mechanism instead, as explained in the (newly written) templating docs.

New features added

• Extension API (Application object):

• Support a new method, add_crossref_type. It works like add_description_unit but the
directive will only create a target and no output.

• Support a new method, add_transform. It takes a standard docutils Transform subclass which is
then applied by Sphinx' reader on parsing reST document trees.

• Add support for other template engines than Jinja, by adding an abstraction called a "template bridge".
This class handles rendering of templates and can be changed using the new configuration value
"template_bridge".

• The config file itself can be an extension (if it provides a setup() function).

• Markup:

• New directive, currentmodule. It can be used to indicate the module name of the following
documented things without creating index entries.

• Allow giving a different title to documents in the toctree.

• Allow giving multiple options in a cmdoption directive.

• Fix display of class members without explicit class name given.

• Templates (HTML output):

• index.html renamed to defindex.html, see above.

• There's a new config value, html_title, that controls the overall "title" of the set of Sphinx docs. It is
used instead everywhere instead of "Projectname vX.Y documentation" now.

• All references to "documentation" in the templates have been removed, so that it is now easier to use
Sphinx for non-documentation documents with the default templates.

• Templates now have an XHTML doctype, to be consistent with docutils' HTML output.

• You can now create an OpenSearch description file with the html_use_opensearch config value.

• You can now quickly include a logo in the sidebar, using the html_logo config value.

• There are new blocks in the sidebar, so that you can easily insert content into the sidebar.

• LaTeX output:

• The sphinx.sty package was cleaned of unused stuff.

• You can include a logo in the title page with the latex_logo config value.

• You can define the link colors and a border and background color for verbatim environments.

Thanks to Jacob Kaplan-Moss, Talin, Jeroen Ruigrok van der Werven and Sebastian Wiesner for suggestions.

Bugs fixed

• sphinx.ext.autodoc: Don't check __module__ for explicitly given members. Remove "self" in class
constructor argument list.

• sphinx.htmlwriter: Don't use os.path for joining image HREFs.

• sphinx.htmlwriter: Don't use SmartyPants for HTML attribute values.

• sphinx.latexwriter: Implement option lists. Also, some other changes were made to sphinx.sty in order to
enhance compatibility and remove old unused stuff. Thanks to Gael Varoquaux for that!

• sphinx.roles: Fix referencing glossary terms with explicit targets.

• sphinx.environment: Don't swallow TOC entries when resolving subtrees.

• sphinx.quickstart: Create a sensible default latex_documents setting.

• sphinx.builder, sphinx.environment: Gracefully handle some user error cases.

• sphinx.util: Follow symbolic links when searching for documents.

Release 0.1.61950 (Mar 26, 2008)

• sphinx.quickstart: Fix format string for Makefile.

Release 0.1.61945 (Mar 26, 2008)

• sphinx.htmlwriter, sphinx.latexwriter: Support the .. image:: directive by copying image files to the output
directory.

• sphinx.builder: Consistently name "special" HTML output directories with a leading underscore; this means
_sources and _static.

• sphinx.environment: Take dependent files into account when collecting the set of outdated sources.

• sphinx.directives: Record files included with .. literalinclude:: as dependencies.

• sphinx.ext.autodoc: Record files from which docstrings are included as dependencies.

• sphinx.builder: Rebuild all HTML files in case of a template change.

• sphinx.builder: Handle unavailability of TOC relations (previous/ next chapter) more gracefully in the HTML
builder.

• sphinx.latexwriter: Include fncychap.sty which doesn't seem to be very common in TeX distributions. Add a
clean target in the latex Makefile. Really pass the correct paper and size options to the LaTeX document
class.

• setup: On Python 2.4, don't egg-depend on docutils if a docutils is already installed -- else it will be overwritten.

Release 0.1.61843 (Mar 24, 2008)

• sphinx.quickstart: Really don't create a makefile if the user doesn't want one.

• setup: Don't install scripts twice, via setuptools entry points and distutils scripts. Only install via entry points.

• sphinx.builder: Don't recognize the HTML builder's copied source files (under _sources) as input files if the
source suffix is .txt.

• sphinx.highlighting: Generate correct markup for LaTeX Verbatim environment escapes even if Pygments is
not installed.

• sphinx.builder: The WebHTMLBuilder is now called PickleHTMLBuilder.

• sphinx.htmlwriter: Make parsed-literal blocks work as expected, not highlighting them via Pygments.

• sphinx.environment: Don't error out on reading an empty source file.

Release 0.1.61798 (Mar 23, 2008)

• sphinx: Work with docutils SVN snapshots as well as 0.4.

• sphinx.ext.doctest: Make the group in which doctest blocks are placed selectable, and default to 'default'.

• sphinx.ext.doctest: Replace <BLANKLINE> in doctest blocks by real blank lines for presentation output, and
remove doctest options given inline.

• sphinx.environment: Move doctest_blocks out of block_quotes to support indented doctest blocks.

• sphinx.ext.autodoc: Render .. automodule:: docstrings in a section node, so that module docstrings can
contain proper sectioning.

• sphinx.ext.autodoc: Use the module's encoding for decoding docstrings, rather than requiring ASCII.

Release 0.1.61611 (Mar 21, 2008)

• First public release.

Projects using Sphinx
This is an (incomplete) alphabetic list of projects that use Sphinx or are experimenting with using it for their
documentation. If you like to be included, please mail to the Google group.

• Advanced Generic Widgets: http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html

• Applied Mathematics at the Stellenbosch University: http://dip.sun.ac.za/

• APSW: http://apsw.googlecode.com/svn/publish/index.html

• ASE: https://wiki.fysik.dtu.dk/ase/

• Bazaar: http://doc.bazaar.canonical.com/en/

• Blender: http://www.blender.org/documentation/250PythonDoc/

• boostmpi: http://documen.tician.de/boostmpi/

http://groups.google.com/group/sphinx-dev
http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html
http://dip.sun.ac.za/
http://apsw.googlecode.com/svn/publish/index.html
https://wiki.fysik.dtu.dk/ase/
http://doc.bazaar.canonical.com/en/
http://www.blender.org/documentation/250PythonDoc/
http://documen.tician.de/boostmpi/

• Calibre: http://calibre.kovidgoyal.net/user_manual/

• Chaco: http://code.enthought.com/projects/chaco/docs/html/

• CodePy: http://documen.tician.de/codepy/

• Cython: http://docs.cython.org/

• C\C++ Python language binding project: http://language-binding.net/index.html

• Director: http://packages.python.org/director/

• Djagios: http://djagios.org/

• Django: http://docs.djangoproject.com/

• F2py: http://www.f2py.org/html/

• Fityk: http://www.unipress.waw.pl/fityk/

• GeoDjango: http://geodjango.org/docs/

• GeoServer: http://docs.geoserver.org/

• Glashammer: http://glashammer.org/

• GPAW: https://wiki.fysik.dtu.dk/gpaw/

• Grok: http://grok.zope.org/doc/current/

• GSL Shell: http://www.nongnu.org/gsl-shell/

• Hedge: http://documen.tician.de/hedge/

• IFM: http://fluffybunny.memebot.com/ifm-docs/index.html

• Jinja: http://jinja.pocoo.org/2/documentation/

• Kaa: http://doc.freevo.org/api/kaa/

• LEPL: http://www.acooke.org/lepl/

• MapServer: http://mapserver.org/

• Matplotlib: http://matplotlib.sourceforge.net/

• Mayavi: http://code.enthought.com/projects/mayavi/docs/development/html/mayavi

• MeshPy: http://documen.tician.de/meshpy/

• MirrorBrain: http://mirrorbrain.org/docs/

• Mixin.com: http://dev.mixin.com/

• mpmath: http://mpmath.googlecode.com/svn/trunk/doc/build/index.html

• MyHDL: http://www.myhdl.org/doc/0.6/

• NetworkX: http://networkx.lanl.gov/

• nose: http://somethingaboutorange.com/mrl/projects/nose/

• NumPy: http://docs.scipy.org/doc/numpy/reference/

• ObjectListView: http://objectlistview.sourceforge.net/python

• OpenEXR: http://excamera.com/articles/26/doc/index.html

• OpenGDA: http://www.opengda.org/gdadoc/html/

• OpenLayers: http://docs.openlayers.org/

• openWNS: http://docs.openwns.org/

• Paste: http://pythonpaste.org/script/

• Paver: http://www.blueskyonmars.com/projects/paver/

• Peach^3: http://peach3.nl/doc/latest/userdoc/

• Py on Windows: http://timgolden.me.uk/python-on-windows/

• PyCuda: http://documen.tician.de/pycuda/

• PyEphem: http://rhodesmill.org/pyephem/

• Pyevolve: http://pyevolve.sourceforge.net/

• PyLit: http://pylit.berlios.de/

• Pylo: http://documen.tician.de/pylo/

• Pylons: http://docs.pylonshq.com/

• PyMOTW: http://www.doughellmann.com/PyMOTW/

• PyPubSub: http://pubsub.sourceforge.net/

• pyrticle: http://documen.tician.de/pyrticle/

http://calibre.kovidgoyal.net/user_manual/
http://code.enthought.com/projects/chaco/docs/html/
http://documen.tician.de/codepy/
http://docs.cython.org/
http://language-binding.net/index.html
http://packages.python.org/director/
http://djagios.org/
http://docs.djangoproject.com/
http://www.f2py.org/html/
http://www.unipress.waw.pl/fityk/
http://geodjango.org/docs/
http://docs.geoserver.org/
http://glashammer.org/
https://wiki.fysik.dtu.dk/gpaw/
http://grok.zope.org/doc/current/
http://www.nongnu.org/gsl-shell/
http://documen.tician.de/hedge/
http://fluffybunny.memebot.com/ifm-docs/index.html
http://jinja.pocoo.org/2/documentation/
http://doc.freevo.org/api/kaa/
http://www.acooke.org/lepl/
http://mapserver.org/
http://matplotlib.sourceforge.net/
http://code.enthought.com/projects/mayavi/docs/development/html/mayavi
http://documen.tician.de/meshpy/
http://mirrorbrain.org/docs/
http://dev.mixin.com/
http://mpmath.googlecode.com/svn/trunk/doc/build/index.html
http://www.myhdl.org/doc/0.6/
http://networkx.lanl.gov/
http://somethingaboutorange.com/mrl/projects/nose/
http://docs.scipy.org/doc/numpy/reference/
http://objectlistview.sourceforge.net/python
http://excamera.com/articles/26/doc/index.html
http://www.opengda.org/gdadoc/html/
http://docs.openlayers.org/
http://docs.openwns.org/
http://pythonpaste.org/script/
http://www.blueskyonmars.com/projects/paver/
http://peach3.nl/doc/latest/userdoc/
http://timgolden.me.uk/python-on-windows/
http://documen.tician.de/pycuda/
http://rhodesmill.org/pyephem/
http://pyevolve.sourceforge.net/
http://pylit.berlios.de/
http://documen.tician.de/pylo/
http://docs.pylonshq.com/
http://www.doughellmann.com/PyMOTW/
http://pubsub.sourceforge.net/
http://documen.tician.de/pyrticle/

• Pysparse: http://pysparse.sourceforge.net/

• PyTango: http://www.tango-controls.org/static/PyTango/latest/doc/html/index.html

• Python: http://docs.python.org/

• python-apt: http://people.debian.org/~jak/python-apt-doc/

• PyUblas: http://documen.tician.de/pyublas/

• Quex: http://quex.sourceforge.net/

• Reteisi: http://docs.argolinux.org/reteisi/

• Roundup: http://www.roundup-tracker.org/

• Sage: http://sagemath.org/doc/

• Satchmo: http://www.satchmoproject.com/docs/svn/

• Scapy: http://www.secdev.org/projects/scapy/doc/

• Selenium: http://seleniumhq.org/docs/

• Self: http://selflanguage.org/

• SimPy: http://simpy.sourceforge.net/

• Sphinx: http://sphinx.pocoo.org/

• Sprox: http://sprox.org/

• SQLAlchemy: http://www.sqlalchemy.org/docs/

• Sqlkit: http://sqlkit.argolinux.org/

• sqlparse: http://python-sqlparse.googlecode.com/svn/docs/api/index.html

• SymPy: http://docs.sympy.org/

• tinyTiM: http://tinytim.sourceforge.net/docs/2.0/

• The Wine Cellar Book: http://www.thewinecellarbook.com/doc/en/

• Total Open Station: http://tops.berlios.de/

• TurboGears: http://turbogears.org/2.0/docs/

• VOR: http://www.vor-cycling.be/

• WebFaction: http://docs.webfaction.com/

• WFront: http://discorporate.us/projects/WFront/

• WTForms: http://wtforms.simplecodes.com/docs/

• Zope 3: e.g. http://docs.carduner.net/z3c-tutorial/

• zc.async: http://packages.python.org/zc.async/1.5.0/

Indices and tables
• Index

• Module Index

• Search Page

• Glossary

Index

A

abbr
role

add_autodoc_attrgetter() (sphinx.application.Sphinx method)

add_autodocumenter() (sphinx.application.Sphinx method)

add_builder() (sphinx.application.Sphinx method)

add_config_value() (sphinx.application.Sphinx method)

add_crossref_type() (sphinx.application.Sphinx method)

http://pysparse.sourceforge.net/
http://www.tango-controls.org/static/PyTango/latest/doc/html/index.html
http://docs.python.org/
http://people.debian.org/~jak/python-apt-doc/
http://documen.tician.de/pyublas/
http://quex.sourceforge.net/
http://docs.argolinux.org/reteisi/
http://www.roundup-tracker.org/
http://sagemath.org/doc/
http://www.satchmoproject.com/docs/svn/
http://www.secdev.org/projects/scapy/doc/
http://seleniumhq.org/docs/
http://selflanguage.org/
http://simpy.sourceforge.net/
http://sphinx.pocoo.org/
http://sprox.org/
http://www.sqlalchemy.org/docs/
http://sqlkit.argolinux.org/
http://python-sqlparse.googlecode.com/svn/docs/api/index.html
http://docs.sympy.org/
http://tinytim.sourceforge.net/docs/2.0/
http://www.thewinecellarbook.com/doc/en/
http://tops.berlios.de/
http://turbogears.org/2.0/docs/
http://www.vor-cycling.be/
http://docs.webfaction.com/
http://discorporate.us/projects/WFront/
http://wtforms.simplecodes.com/docs/
http://docs.carduner.net/z3c-tutorial/
http://packages.python.org/zc.async/1.5.0/

add_description_unit() (sphinx.application.Sphinx method)

add_directive() (sphinx.application.Sphinx method)

add_event() (sphinx.application.Sphinx method)

add_function_parentheses
configuration value

add_generic_role() (sphinx.application.Sphinx method)

add_javascript() (sphinx.application.Sphinx method)

add_lexer() (sphinx.application.Sphinx method)

add_module_names
configuration value

add_node() (sphinx.application.Sphinx method)

add_role() (sphinx.application.Sphinx method)

add_transform() (sphinx.application.Sphinx method)

attr
role

attribute
directive

attributes (in module sphinx.ext.autosummary)

autoattribute
directive

autoclass
directive

autoclass_content
configuration value

autodata
directive

autodoc-process-docstring
event

autodoc-process-signature
event

autodoc-skip-member
event

autodoc_member_order
configuration value

autoexception
directive

autofunction
directive

automatic
documentation
linking
testing

automethod
directive

automodule
directive

autosummary
directive

autosummary_generate
configuration value

B

between() (in module sphinx.ext.autodoc)

build() (sphinx.builders.Builder method)

build-finished
event

build_all() (sphinx.builders.Builder method)

build_specific() (sphinx.builders.Builder method)

build_update() (sphinx.builders.Builder method)

builder

(built-in variable)

Builder (class in sphinx.builders)

builder-inited
event

C

cdata
role

centered
directive

cfunc
role

cfunction
directive

changes
in version

ChangesBuilder (class in sphinx.builders.changes)

CheckExternalLinksBuilder (class in sphinx.builders.linkcheck)

class
directive
role

class (in module sphinx.ext.autosummary)

classes (in module sphinx.ext.autosummary)

classmethod
directive

cmacro
directive
role

cmdoption
directive

cmember
directive

code
examples

command
role

conf (module)

configuration directory

configuration value
add_function_parentheses
add_module_names

autoclass_content
autodoc_member_order
autosummary_generate
copyright
coverage_c_path
coverage_c_regexes
coverage_ignore_c_items
coverage_ignore_classes
coverage_ignore_functions
coverage_ignore_modules
default_role
doctest_global_setup
doctest_path
doctest_test_doctest_blocks
exclude_dirnames
exclude_dirs
exclude_trees
extensions
graphviz_dot
graphviz_dot_args
highlight_language
html_add_permalinks
html_additional_pages
html_copy_source
html_favicon
html_file_suffix
html_last_updated_fmt
html_link_suffix
html_logo
html_short_title
html_show_sourcelink
html_show_sphinx
html_sidebars
html_split_index
html_static_path
html_style
html_theme
html_theme_options
html_theme_path
html_title
html_translator_class
html_use_index
html_use_modindex
html_use_opensearch
html_use_smartypants
htmlhelp_basename
inheritance_edge_attrs
inheritance_graph_attrs
inheritance_node_attrs
intersphinx_cache_limit
intersphinx_mapping
jsmath_path
keep_warnings
language
latex_additional_files
latex_appendices
latex_documents
latex_elements
latex_font_size
latex_logo
latex_paper_size
latex_preamble
latex_use_modindex

latex_use_parts
locale_dirs
master_doc
modindex_common_prefix
pngmath_dvipng
pngmath_dvipng_args
pngmath_latex
pngmath_latex_args
pngmath_latex_preamble
pngmath_use_preview
project
pygments_style
release
rst_epilog
show_authors
source_encoding
source_suffix
template_bridge
templates_path
today
today_fmt
todo_include_todos
trim_footnote_reference_space
unused_docs
version

connect() (sphinx.application.Sphinx method)

const
role

contents
table of

copyright
configuration value

copyright (built-in variable)

coverage_c_path
configuration value

coverage_c_regexes
configuration value

coverage_ignore_c_items
configuration value

coverage_ignore_classes
configuration value

coverage_ignore_functions
configuration value

coverage_ignore_modules
configuration value

CoverageBuilder (class in sphinx.ext.coverage)

ctype
directive
role

currentmodule
directive

cut_lines() (in module sphinx.ext.autodoc)

cvar
directive

D

data
directive
role

default
role

default_role
configuration value

describe
directive

description unit

dfn
role

digraph
directive

directive
attribute
autoattribute
autoclass
autodata
autoexception
autofunction
automethod
automodule
autosummary
centered
cfunction
class
classmethod
cmacro
cmdoption
cmember
ctype
currentmodule
cvar
data
describe
digraph
doctest
envvar
exception
function
glossary
graph
graphviz
hlist
ifconfig
index
inheritance-diagram
literalinclude
math
method
module
moduleauthor
note
only
productionlist
program
rubric

sectionauthor
seealso
staticmethod
tabularcolumns
testcode
testoutput
testsetup
toctree
todo
todolist
versionadded
versionchanged
warning

DirectoryHTMLBuilder (class in sphinx.builders.html)

disconnect() (sphinx.application.Sphinx method)

doc
role

docstitle (built-in variable)

docstring

doctest

directive

doctest_global_setup
configuration value

doctest_path
configuration value

doctest_test_doctest_blocks
configuration value

doctree-read
event

doctree-resolved
event

documentation
automatic

download
role

E

embedded (built-in variable)

emit() (sphinx.application.Sphinx method)

emit_firstresult() (sphinx.application.Sphinx method)

env-purge-doc
event

env-updated
event

environment

envvar
directive
role

eq
role

event
autodoc-process-docstring
autodoc-process-signature

autodoc-skip-member
build-finished
builder-inited
doctree-read
doctree-resolved
env-purge-doc
env-updated
missing-reference
page-context
source-read

examples
code

exc
role

exception
directive

exceptions (in module sphinx.ext.autosummary)

exclude_dirnames
configuration value

exclude_dirs
configuration value

exclude_trees
configuration value

ExtensionError

extensions
configuration value

F

favicon (built-in variable)

file
role

file_suffix (built-in variable)

finish() (sphinx.builders.Builder method)

fullname (in module sphinx.ext.autosummary)

func
role

function
directive

functions (in module sphinx.ext.autosummary)

G

get_outdated_docs() (sphinx.builders.Builder method)

get_relative_uri() (sphinx.builders.Builder method)

get_target_uri() (sphinx.builders.Builder method)

global
substitutions

globalcontext_filename (sphinx.builders.html.SerializingHTMLBuilder attribute)

glossary
directive

graph
directive

graphviz
directive

graphviz_dot
configuration value

graphviz_dot_args
configuration value

guilabel
role

H

has_source (built-in variable)

hasdoc() (built-in function)

highlight_language
configuration value

hlist
directive

html_add_permalinks
configuration value

html_additional_pages
configuration value

html_copy_source
configuration value

html_favicon
configuration value

html_file_suffix
configuration value

html_last_updated_fmt
configuration value

html_link_suffix
configuration value

html_logo
configuration value

html_short_title
configuration value

html_show_sourcelink
configuration value

html_show_sphinx
configuration value

html_sidebars
configuration value

html_split_index
configuration value

html_static_path
configuration value

html_style
configuration value

html_theme
configuration value

html_theme_options
configuration value

html_theme_path
configuration value

html_title

configuration value

html_translator_class
configuration value

html_use_index
configuration value

html_use_modindex
configuration value

html_use_opensearch
configuration value

html_use_smartypants
configuration value

htmlhelp_basename
configuration value

HTMLHelpBuilder (class in sphinx.builders.html)

I

ifconfig
directive

implementation (sphinx.builders.html.SerializingHTMLBuilder attribute)

in version
changes

index
directive

inheritance-diagram
directive

inheritance_edge_attrs
configuration value

inheritance_graph_attrs
configuration value

inheritance_node_attrs
configuration value

init() (sphinx.application.TemplateBridge method)

(sphinx.builders.Builder method)

intersphinx_cache_limit
configuration value

intersphinx_mapping
configuration value

J

jsmath_path
configuration value

JSONHTMLBuilder (class in sphinx.builders.html)

K

kbd
role

keep_warnings
configuration value

keyword
role

L

language
configuration value

last_updated (built-in variable)

latex_additional_files
configuration value

latex_appendices
configuration value

latex_documents
configuration value

latex_elements
configuration value

latex_font_size
configuration value

latex_logo
configuration value

latex_paper_size
configuration value

latex_preamble
configuration value

latex_use_modindex
configuration value

latex_use_parts
configuration value

LaTeXBuilder (class in sphinx.builders.latex)

linking
automatic

literalinclude
directive

load_env() (sphinx.builders.Builder method)

locale_dirs
configuration value

logo (built-in variable)

M

mailheader
role

makevar
role

manpage
role

master_doc
configuration value

master_doc (built-in variable)

math
directive
role

members (in module sphinx.ext.autosummary)

menuselection
role

meta (built-in variable)

meth
role

method
directive

methods (in module sphinx.ext.autosummary)

mimetype
role

missing-reference
event

mod
role

modindex_common_prefix
configuration value

module
directive

module (in module sphinx.ext.autosummary)

moduleauthor
directive

N

name (in module sphinx.ext.autosummary)

newest_template_mtime() (sphinx.application.TemplateBridge method)

newsgroup
role

next (built-in variable)

note

directive

O

obj
role

objname (in module sphinx.ext.autosummary)

only
directive

option
role

out_suffix (sphinx.builders.html.SerializingHTMLBuilder attribute)

P

page-context
event

pagename (built-in variable)

parents (built-in variable)

pathto() (built-in function) [1]

pep
role

PickleHTMLBuilder (class in sphinx.builders.html)

pngmath_dvipng
configuration value

pngmath_dvipng_args
configuration value

pngmath_latex
configuration value

pngmath_latex_args
configuration value

pngmath_latex_preamble
configuration value

pngmath_use_preview
configuration value

prepare_writing() (sphinx.builders.Builder method)

prev (built-in variable)

productionlist
directive

program
directive
role

project
configuration value

project (built-in variable)

pygments_style
configuration value

R

ref
role

regexp
role

relbar() (built-in function)

reldelim1 (built-in variable)

reldelim2 (built-in variable)

release
configuration value

release (built-in variable)

rellinks (built-in variable)

render() (sphinx.application.TemplateBridge method)

render_string() (sphinx.application.TemplateBridge method)

rfc
role

role
abbr
attr
cdata
cfunc
class
cmacro
command
const
ctype
data
dfn
doc

download
envvar
eq
exc
file
func
guilabel
kbd
keyword
mailheader
makevar
manpage
math
menuselection
meth
mimetype
mod
newsgroup
obj
option
pep
program
ref
regexp
rfc
samp
term
token

rst_epilog
configuration value

rubric
directive

S

samp
role

script_files (built-in variable)

searchindex_filename (sphinx.builders.html.SerializingHTMLBuilder attribute)

sectionauthor
directive

seealso
directive

SerializingHTMLBuilder (class in sphinx.builders.html)

setup_extension() (sphinx.application.Sphinx method)

shorttitle (built-in variable)

show_authors
configuration value

show_source (built-in variable)

sidebar() (built-in function)

snippets
testing

source directory

source-read
event

source_encoding

configuration value

source_suffix
configuration value

sourcecode

sourcename (built-in variable)

sphinx.application (module)

sphinx.builders (module)

sphinx.builders.changes (module)

sphinx.builders.html (module)

sphinx.builders.latex (module)

sphinx.builders.linkcheck (module)

sphinx.builders.text (module)

sphinx.ext.autodoc (module)

sphinx.ext.autosummary (module)

sphinx.ext.coverage (module)

sphinx.ext.doctest (module)

sphinx.ext.graphviz (module)

sphinx.ext.ifconfig (module)

sphinx.ext.inheritance_diagram (module)

sphinx.ext.intersphinx (module)

sphinx.ext.jsmath (module)

sphinx.ext.mathbase (module)

sphinx.ext.pngmath (module)

sphinx.ext.refcounting (module)

sphinx.ext.todo (module)

sphinx_version (built-in variable)

StandaloneHTMLBuilder (class in sphinx.builders.html)

staticmethod
directive

style (built-in variable)

substitutions
global

T

table of
contents

tabularcolumns
directive

template_bridge
configuration value

TemplateBridge (class in sphinx.application)

templates_path
configuration value

term
role

testcode

directive

testing
automatic
snippets

testoutput
directive

testsetup
directive

TextBuilder (class in sphinx.builders.text)

title (built-in variable)

toc (built-in variable)

toctree
directive

toctree (built-in variable)

today
configuration value

today_fmt
configuration value

todo
directive

todo_include_todos
configuration value

todolist
directive

token
role

trim_footnote_reference_space
configuration value

U

underline (in module sphinx.ext.autosummary)

unused_docs
configuration value

use_opensearch (built-in variable)

V

version
configuration value

version (built-in variable)

versionadded
directive

versionchanged
directive

W

warning

directive

write_doc() (sphinx.builders.Builder method)

Global Module Index

A

sphinx.application , Application class and extensibility interface.

B

sphinx.builders , Available built-in builder classes.

sphinx.builders.changes

sphinx.builders.html

sphinx.builders.latex

sphinx.builders.linkcheck

sphinx.builders.text

C

conf , Build configuration file.

E

sphinx.ext.autodoc , Include documentation from docstrings.

sphinx.ext.autosummary , Generate autodoc summaries

sphinx.ext.coverage , Check Python modules and C API for coverage in the documentation.

sphinx.ext.doctest , Test snippets in the documentation.

sphinx.ext.graphviz , Support for Graphviz graphs.

sphinx.ext.ifconfig , Include documentation content based on configuration values.

sphinx.ext.inheritance_diagram , Support for displaying inheritance diagrams via graphviz.

sphinx.ext.intersphinx , Link to other Sphinx documentation.

sphinx.ext.jsmath , Render math via JavaScript.

sphinx.ext.mathbase , Common math support for pngmath and jsmath.

sphinx.ext.pngmath , Render math as PNG images.

sphinx.ext.refcounting , Keep track of reference counting behavior.

sphinx.ext.todo , Allow inserting todo items into documents.

	Sphinx documentation contents
	Introduction
	Conversion from other systems
	Prerequisites
	Setting up the documentation sources
	Running a build

	Sphinx concepts
	Document names
	The TOC tree
	Special names

	reStructuredText Primer
	Paragraphs
	Inline markup
	Lists and Quotes
	Source Code
	Hyperlinks
	External links
	Internal links

	Sections
	Explicit Markup
	Directives
	Images
	Footnotes
	Citations
	Substitutions
	Comments
	Source encoding
	Gotchas

	Sphinx Markup Constructs
	Module-specific markup
	Object description units
	Signatures
	Info field lists
	Command-line program markup
	Custom description units

	Paragraph-level markup
	Table-of-contents markup
	Index-generating markup
	Glossary
	Grammar production displays
	Showing code examples
	Line numbers
	Includes

	Inline markup
	Cross-referencing syntax
	Cross-referencing Python objects
	Cross-referencing C constructs
	Cross-referencing other items of interest
	Cross-referencing arbitrary locations
	Cross-referencing documents
	Referencing downloadable files
	Other semantic markup
	Substitutions

	Miscellaneous markup
	File-wide metadata
	Meta-information markup
	Including content based on tags
	Tables

	Available builders
	Serialization builder details

	The build configuration file
	General configuration
	Project information
	Options for HTML output
	Options for LaTeX output

	HTML theming support
	Using a theme
	Builtin themes
	Creating themes
	Templating
	Static templates

	Templating
	Do I need to use Sphinx' templates to produce HTML?
	Jinja/Sphinx Templating Primer
	Working with the builtin templates
	Blocks
	Configuration Variables
	Helper Functions
	Global Variables

	Sphinx Extensions
	Tutorial: Writing a simple extension
	Build Phases
	Extension Design
	The Setup Function
	The Node Classes
	The Directive Classes
	The Event Handlers

	Extension API
	Sphinx core events
	The template bridge

	Writing new builders
	Builtin Sphinx extensions
	sphinx.ext.autodoc -- Include documentation from docstrings
	Docstring preprocessing
	Skipping members

	sphinx.ext.autosummary -- Generate autodoc summaries
	sphinx-autogen -- generate autodoc stub pages
	Generating stub pages automatically
	Customizing templates

	sphinx.ext.doctest -- Test snippets in the documentation
	sphinx.ext.intersphinx -- Link to other projects' documentation
	Math support in Sphinx
	sphinx.ext.pngmath -- Render math as PNG images
	sphinx.ext.jsmath -- Render math via JavaScript

	sphinx.ext.graphviz -- Add Graphviz graphs
	sphinx.ext.inheritance_diagram -- Include inheritance diagrams
	sphinx.ext.refcounting -- Keep track of reference counting behavior
	sphinx.ext.ifconfig -- Include content based on configuration
	sphinx.ext.coverage -- Collect doc coverage stats
	sphinx.ext.todo -- Support for todo items

	Third-party extensions
	Where to put your own extensions?

	Sphinx FAQ
	How do I...
	Using Sphinx with...

	Glossary
	Changes in Sphinx
	Release 0.6.4 (Jan 12, 2010)
	Release 0.6.3 (Sep 03, 2009)
	Release 0.6.2 (Jun 16, 2009)
	Release 0.6.1 (Mar 26, 2009)
	Release 0.6 (Mar 24, 2009)
	New features added

	Release 0.5.2 (Mar 24, 2009)
	Release 0.5.1 (Dec 15, 2008)
	Release 0.5 (Nov 23, 2008) -- Birthday release!
	New features added
	Bugs fixed

	Release 0.4.3 (Oct 8, 2008)
	Release 0.4.2 (Jul 29, 2008)
	Release 0.4.1 (Jul 5, 2008)
	Release 0.4 (Jun 23, 2008)
	New features added
	Bugs fixed

	Release 0.3 (May 6, 2008)
	New features added
	Bugs fixed

	Release 0.2 (Apr 27, 2008)
	Incompatible changes
	New features added
	Bugs fixed

	Release 0.1.61950 (Mar 26, 2008)
	Release 0.1.61945 (Mar 26, 2008)
	Release 0.1.61843 (Mar 24, 2008)
	Release 0.1.61798 (Mar 23, 2008)
	Release 0.1.61611 (Mar 21, 2008)

	Projects using Sphinx

	Indices and tables
	Index
	Global Module Index

