tf.keras.metrics.MeanAbsolutePercentageError

View source on GitHub

Class MeanAbsolutePercentageError

Computes the mean absolute percentage error between y_true and y_pred.

Aliases:

For example, if y_true is [0., 0., 1., 1.], and y_pred is [1., 1., 1., 0.] the mean absolute percentage error is 5e+08.

Usage:

m = tf.keras.metrics.MeanAbsolutePercentageError()
m.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
print('Final result: ', m.result().numpy())  # Final result: 5e+08

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.MeanAbsolutePercentageError()])

__init__

View source

__init__(
    name='mean_absolute_percentage_error',
    dtype=None
)

Creates a MeanMetricWrapper instance.

Args:

  • fn: The metric function to wrap, with signature fn(y_true, y_pred, **kwargs).
  • name: (Optional) string name of the metric instance.
  • dtype: (Optional) data type of the metric result.
  • **kwargs: The keyword arguments that are passed on to fn.

__new__

View source

__new__(
    cls,
    *args,
    **kwargs
)

Create and return a new object. See help(type) for accurate signature.

Methods

tf.keras.metrics.MeanAbsolutePercentageError.reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

tf.keras.metrics.MeanAbsolutePercentageError.result

View source

result()

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

tf.keras.metrics.MeanAbsolutePercentageError.update_state

View source

update_state(
    y_true,
    y_pred,
    sample_weight=None
)

Accumulates metric statistics.

y_true and y_pred should have the same shape.

Args:

  • y_true: The ground truth values.
  • y_pred: The predicted values.
  • sample_weight: Optional weighting of each example. Defaults to 1. Can be a Tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true.

Returns:

Update op.