![]() |
Class GlorotNormal
The Glorot normal initializer, also called Xavier normal initializer.
Inherits From: VarianceScaling
Aliases:
- Class
tf.compat.v2.initializers.GlorotNormal
- Class
tf.compat.v2.initializers.glorot_normal
- Class
tf.compat.v2.keras.initializers.glorot_normal
It draws samples from a truncated normal distribution centered on 0
with stddev = sqrt(2 / (fan_in + fan_out))
where fan_in
is the number of input units in the weight tensor
and fan_out
is the number of output units in the weight tensor.
Args:
seed
: A Python integer. Used to create random seeds. Seetf.compat.v1.set_random_seed
for behavior.
References:
__init__
__init__(seed=None)
Initialize self. See help(type(self)) for accurate signature.
Methods
tf.compat.v2.keras.initializers.GlorotNormal.__call__
__call__(
shape,
dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
Args:
shape
: Shape of the tensor.dtype
: Optional dtype of the tensor. Only floating point types are supported.
Raises:
ValueError
: If the dtype is not floating point
tf.compat.v2.keras.initializers.GlorotNormal.from_config
from_config(
cls,
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args:
config
: A Python dictionary. It will typically be the output ofget_config
.
Returns:
An Initializer instance.
tf.compat.v2.keras.initializers.GlorotNormal.get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns:
A JSON-serializable Python dict.