description: A callable tf.Module.

tfp.experimental.nn.Layer

A callable tf.Module.

also_track

name Returns the name of this module as passed or determined in the ctor.

NOTE: This is not the same as the self.name_scope.name which includes parent module names.

name_scope Returns a tf.name_scope instance for this class.
non_trainable_variables Sequence of non-trainable variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.

submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

>>> a = tf.Module()
>>> b = tf.Module()
>>> c = tf.Module()
>>> a.b = b
>>> b.c = c
>>> list(a.submodules) == [b, c]
True
>>> list(b.submodules) == [c]
True
>>> list(c.submodules) == []
True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.

validate_args Python bool indicating possibly expensive checks are enabled.
variables Sequence of variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.

Methods

load

View source

save

View source

summary

View source

with_name_scope

Decorator to automatically enter the module name scope.

>>> class MyModule(tf.Module):
...   @tf.Module.with_name_scope
...   def __call__(self, x):
...     if not hasattr(self, 'w'):
...       self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
...     return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

>>> mod = MyModule()
>>> mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
>>> mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>

Args
method The method to wrap.

Returns
The original method wrapped such that it enters the module's name scope.