import torch
import torch.nn.functional as F
[docs]def connected_components(image: torch.Tensor, num_iterations: int = 100) -> torch.Tensor:
r"""Computes the Connected-component labelling (CCL) algorithm.
.. image:: https://github.com/kornia/data/raw/main/cells_segmented.png
The implementation is an adaptation of the following repository:
https://gist.github.com/efirdc/5d8bd66859e574c683a504a4690ae8bc
.. warning::
This is an experimental API subject to changes and optimization improvements.
.. note::
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
connected_components.html>`__.
Args:
image: the binarized input image with shape :math:`(*, 1, H, W)`.
The image must be in floating point with range [0, 1].
num_iterations: the number of iterations to make the algorithm to converge.
Return:
The labels image with the same shape of the input image.
Example:
>>> img = torch.rand(2, 1, 4, 5)
>>> img_labels = connected_components(img, num_iterations=100)
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"Input imagetype is not a torch.Tensor. Got: {type(image)}")
if not isinstance(num_iterations, int) or num_iterations < 1:
raise TypeError("Input num_iterations must be a positive integer.")
if len(image.shape) < 3 or image.shape[-3] != 1:
raise ValueError(f"Input image shape must be (*,1,H,W). Got: {image.shape}")
H, W = image.shape[-2:]
image_view = image.view(-1, 1, H, W)
# precompute a mask with the valid values
mask = image_view == 1
# allocate the output tensors for labels
B, _, _, _ = image_view.shape
out = torch.arange(B * H * W, device=image.device, dtype=image.dtype).view((-1, 1, H, W))
out[~mask] = 0
for _ in range(num_iterations):
out[mask] = F.max_pool2d(out, kernel_size=3, stride=1, padding=1)[mask]
return out.view_as(image)