import math
from typing import Optional, Union
import torch
import torch.nn.functional as F
from kornia.core import Tensor, concatenate, stack, tensor, zeros
from kornia.geometry.conversions import angle_to_rotation_matrix, convert_points_from_homogeneous, rad2deg
from kornia.geometry.linalg import transform_points
from kornia.geometry.transform import pyrdown
from kornia.testing import KORNIA_CHECK_LAF, KORNIA_CHECK_SHAPE
[docs]def get_laf_scale(LAF: Tensor) -> Tensor:
"""Return a scale of the LAFs.
Args:
LAF: tensor [BxNx2x3] or [BxNx2x2].
Returns:
tensor BxNx1x1.
Shape:
- Input: :math: `(B, N, 2, 3)`
- Output: :math: `(B, N, 1, 1)`
Example:
>>> input = torch.ones(1, 5, 2, 3) # BxNx2x3
>>> output = get_laf_scale(input) # BxNx1x1
"""
KORNIA_CHECK_LAF(LAF)
eps = 1e-10
out = LAF[..., 0:1, 0:1] * LAF[..., 1:2, 1:2] - LAF[..., 1:2, 0:1] * LAF[..., 0:1, 1:2] + eps
return out.abs().sqrt()
[docs]def get_laf_center(LAF: Tensor) -> Tensor:
"""Return a center (keypoint) of the LAFs.
Args:
LAF: tensor [BxNx2x3].
Returns:
tensor BxNx2.
Shape:
- Input: :math: `(B, N, 2, 3)`
- Output: :math: `(B, N, 2)`
Example:
>>> input = torch.ones(1, 5, 2, 3) # BxNx2x3
>>> output = get_laf_center(input) # BxNx2
"""
KORNIA_CHECK_LAF(LAF)
out = LAF[..., 2]
return out
[docs]def get_laf_orientation(LAF: Tensor) -> Tensor:
"""Return orientation of the LAFs, in degrees.
Args:
LAF: (Tensor): tensor [BxNx2x3].
Returns:
Tensor: tensor BxNx1 .
Shape:
- Input: :math: `(B, N, 2, 3)`
- Output: :math: `(B, N, 1)`
Example:
>>> input = torch.ones(1, 5, 2, 3) # BxNx2x3
>>> output = get_laf_orientation(input) # BxNx1
"""
KORNIA_CHECK_LAF(LAF)
angle_rad = torch.atan2(LAF[..., 0, 1], LAF[..., 0, 0])
return rad2deg(angle_rad).unsqueeze(-1)
def set_laf_orientation(LAF: Tensor, angles_degrees: Tensor) -> Tensor:
"""Change the orientation of the LAFs.
Args:
LAF: tensor [BxNx2x3].
angles: tensor BxNx1, in degrees.
Returns:
tensor [BxNx2x3].
Shape:
- Input: :math: `(B, N, 2, 3)`, `(B, N, 1)`
- Output: :math: `(B, N, 2, 3)`
"""
KORNIA_CHECK_LAF(LAF)
B, N = LAF.shape[:2]
rotmat = angle_to_rotation_matrix(angles_degrees).view(B * N, 2, 2)
laf_out = concatenate(
[torch.bmm(make_upright(LAF).view(B * N, 2, 3)[:, :2, :2], rotmat), LAF.view(B * N, 2, 3)[:, :2, 2:]], dim=2
).view(B, N, 2, 3)
return laf_out
[docs]def laf_from_center_scale_ori(xy: Tensor, scale: Optional[Tensor] = None, ori: Optional[Tensor] = None) -> Tensor:
"""Return orientation of the LAFs, in radians. Useful to create kornia LAFs from OpenCV keypoints.
Args:
xy: tensor [BxNx2].
scale: tensor [BxNx1x1]. If not provided, scale = 1 is assumed
ori: tensor [BxNx1]. If not provided orientation = 0 is assumed
Returns:
tensor BxNx2x3.
"""
KORNIA_CHECK_SHAPE(xy, ["B", "N", "2"])
device = xy.device
dtype = xy.dtype
B, N = xy.shape[:2]
if scale is None:
scale = torch.ones(B, N, 1, 1, device=device, dtype=dtype)
if ori is None:
ori = zeros(B, N, 1, device=device, dtype=dtype)
KORNIA_CHECK_SHAPE(scale, ["B", "N", "1", "1"])
KORNIA_CHECK_SHAPE(ori, ["B", "N", "1"])
unscaled_laf = concatenate([angle_to_rotation_matrix(ori.squeeze(-1)), xy.unsqueeze(-1)], dim=-1)
laf = scale_laf(unscaled_laf, scale)
return laf
[docs]def scale_laf(laf: Tensor, scale_coef: Union[float, Tensor]) -> Tensor:
"""Multiplies region part of LAF ([:, :, :2, :2]) by a scale_coefficient.
So the center, shape and orientation of the local feature stays the same, but the region area changes.
Args:
laf: tensor [BxNx2x3] or [BxNx2x2].
scale_coef: broadcastable tensor or float.
Returns:
tensor BxNx2x3.
Shape:
- Input: :math:`(B, N, 2, 3)`
- Input: :math:`(B, N,)` or ()
- Output: :math:`(B, N, 1, 1)`
Example:
>>> input = torch.ones(1, 5, 2, 3) # BxNx2x3
>>> scale = 0.5
>>> output = scale_laf(input, scale) # BxNx2x3
"""
if (type(scale_coef) is not float) and (type(scale_coef) is not Tensor):
raise TypeError("scale_coef should be float or Tensor " "Got {}".format(type(scale_coef)))
KORNIA_CHECK_LAF(laf)
centerless_laf = laf[:, :, :2, :2]
return concatenate([scale_coef * centerless_laf, laf[:, :, :, 2:]], dim=3)
[docs]def make_upright(laf: Tensor, eps: float = 1e-9) -> Tensor:
"""Rectify the affine matrix, so that it becomes upright.
Args:
laf: tensor of LAFs.
eps : for safe division.
Returns:
tensor of same shape.
Shape:
- Input: :math:`(B, N, 2, 3)`
- Output: :math:`(B, N, 2, 3)`
Example:
>>> input = torch.ones(1, 5, 2, 3) # BxNx2x3
>>> output = make_upright(input) # BxNx2x3
"""
KORNIA_CHECK_LAF(laf)
det = get_laf_scale(laf)
scale = det
# The function is equivalent to doing 2x2 SVD and resetting rotation
# matrix to an identity: U, S, V = svd(LAF); LAF_upright = U * S.
b2a2 = torch.sqrt(laf[..., 0:1, 1:2] ** 2 + laf[..., 0:1, 0:1] ** 2) + eps
laf1_ell = concatenate([(b2a2 / det).contiguous(), torch.zeros_like(det)], dim=3)
laf2_ell = concatenate(
[
((laf[..., 1:2, 1:2] * laf[..., 0:1, 1:2] + laf[..., 1:2, 0:1] * laf[..., 0:1, 0:1]) / (b2a2 * det)),
(det / b2a2).contiguous(),
],
dim=3,
)
laf_unit_scale = concatenate([concatenate([laf1_ell, laf2_ell], dim=2), laf[..., :, 2:3]], dim=3)
return scale_laf(laf_unit_scale, scale)
[docs]def ellipse_to_laf(ells: Tensor) -> Tensor:
"""Convert ellipse regions to LAF format.
Ellipse (a, b, c) and upright covariance matrix [a11 a12; 0 a22] are connected
by inverse matrix square root: A = invsqrt([a b; b c]).
See also https://github.com/vlfeat/vlfeat/blob/master/toolbox/sift/vl_frame2oell.m
Args:
ells: tensor of ellipses in Oxford format [x y a b c].
Returns:
tensor of ellipses in LAF format.
Shape:
- Input: :math:`(B, N, 5)`
- Output: :math:`(B, N, 2, 3)`
Example:
>>> input = torch.ones(1, 10, 5) # BxNx5
>>> output = ellipse_to_laf(input) # BxNx2x3
"""
n_dims = len(ells.size())
if n_dims != 3:
raise TypeError("ellipse shape should be must be [BxNx5]. " "Got {}".format(ells.size()))
B, N, dim = ells.size()
if dim != 5:
raise TypeError("ellipse shape should be must be [BxNx5]. " "Got {}".format(ells.size()))
# Previous implementation was incorrectly using Cholesky decomp as matrix sqrt
# ell_shape = concatenate([concatenate([ells[..., 2:3], ells[..., 3:4]], dim=2).unsqueeze(2),
# concatenate([ells[..., 3:4], ells[..., 4:5]], dim=2).unsqueeze(2)], dim=2).view(-1, 2, 2)
# out = torch.matrix_power(torch.cholesky(ell_shape, False), -1).view(B, N, 2, 2)
# We will calculate 2x2 matrix square root via special case formula
# https://en.wikipedia.org/wiki/Square_root_of_a_matrix
# "The Cholesky factorization provides another particular example of square root
# which should not be confused with the unique non-negative square root."
# https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix
# M = (A 0; C D)
# R = (sqrt(A) 0; C / (sqrt(A)+sqrt(D)) sqrt(D))
a11 = ells[..., 2:3].abs().sqrt()
a12 = torch.zeros_like(a11)
a22 = ells[..., 4:5].abs().sqrt()
a21 = ells[..., 3:4] / (a11 + a22).clamp(1e-9)
A = stack([a11, a12, a21, a22], dim=-1).view(B, N, 2, 2).inverse()
out = concatenate([A, ells[..., :2].view(B, N, 2, 1)], dim=3)
return out
[docs]def laf_to_boundary_points(LAF: Tensor, n_pts: int = 50) -> Tensor:
"""Convert LAFs to boundary points of the regions + center.
Used for local features visualization, see visualize_laf function.
Args:
LAF:
n_pts: number of points to output.
Returns:
tensor of boundary points.
Shape:
- Input: :math:`(B, N, 2, 3)`
- Output: :math:`(B, N, n_pts, 2)`
"""
KORNIA_CHECK_LAF(LAF)
B, N, _, _ = LAF.size()
pts = concatenate(
[
torch.sin(torch.linspace(0, 2 * math.pi, n_pts - 1)).unsqueeze(-1),
torch.cos(torch.linspace(0, 2 * math.pi, n_pts - 1)).unsqueeze(-1),
torch.ones(n_pts - 1, 1),
],
dim=1,
)
# Add origin to draw also the orientation
pts = concatenate([tensor([0.0, 0.0, 1.0]).view(1, 3), pts], dim=0).unsqueeze(0).expand(B * N, n_pts, 3)
pts = pts.to(LAF.device).to(LAF.dtype)
aux = tensor([0.0, 0.0, 1.0]).view(1, 1, 3).expand(B * N, 1, 3)
HLAF = concatenate([LAF.view(-1, 2, 3), aux.to(LAF.device).to(LAF.dtype)], dim=1)
pts_h = torch.bmm(HLAF, pts.permute(0, 2, 1)).permute(0, 2, 1)
return convert_points_from_homogeneous(pts_h.view(B, N, n_pts, 3))
def get_laf_pts_to_draw(LAF: Tensor, img_idx: int = 0):
"""Return numpy array for drawing LAFs (local features).
Args:
LAF:
n_pts: number of boundary points to output.
Returns:
tensor of boundary points.
Shape:
- Input: :math:`(B, N, 2, 3)`
- Output: :math:`(B, N, n_pts, 2)`
Examples:
x, y = get_laf_pts_to_draw(LAF, img_idx)
plt.figure()
plt.imshow(kornia.utils.tensor_to_image(img[img_idx]))
plt.plot(x, y, 'r')
plt.show()
"""
# TODO: Refactor doctest
KORNIA_CHECK_LAF(LAF)
pts = laf_to_boundary_points(LAF[img_idx : img_idx + 1])[0]
pts_np = pts.detach().permute(1, 0, 2).cpu().numpy()
return (pts_np[..., 0], pts_np[..., 1])
[docs]def denormalize_laf(LAF: Tensor, images: Tensor) -> Tensor:
"""De-normalize LAFs from scale to image scale.
B,N,H,W = images.size()
MIN_SIZE = min(H,W)
[a11 a21 x]
[a21 a22 y]
becomes
[a11*MIN_SIZE a21*MIN_SIZE x*W]
[a21*MIN_SIZE a22*MIN_SIZE y*H]
Args:
LAF:
images: images, LAFs are detected in.
Returns:
the denormalized lafs.
Shape:
- Input: :math:`(B, N, 2, 3)`
- Output: :math:`(B, N, 2, 3)`
"""
KORNIA_CHECK_LAF(LAF)
_, _, h, w = images.size()
wf = float(w)
hf = float(h)
min_size = min(hf, wf)
coef = torch.ones(1, 1, 2, 3).to(LAF.dtype).to(LAF.device) * min_size
coef[0, 0, 0, 2] = wf
coef[0, 0, 1, 2] = hf
return coef.expand_as(LAF) * LAF
[docs]def normalize_laf(LAF: Tensor, images: Tensor) -> Tensor:
"""Normalize LAFs to [0,1] scale from pixel scale. See below:
B,N,H,W = images.size()
MIN_SIZE = min(H,W)
[a11 a21 x]
[a21 a22 y]
becomes:
[a11/MIN_SIZE a21/MIN_SIZE x/W]
[a21/MIN_SIZE a22/MIN_SIZE y/H]
Args:
LAF: (Tensor).
images: (Tensor) images, LAFs are detected in
Returns:
LAF: (Tensor).
Shape:
- Input: :math:`(B, N, 2, 3)`
- Output: :math:`(B, N, 2, 3)`
"""
KORNIA_CHECK_LAF(LAF)
_, _, h, w = images.size()
wf = float(w)
hf = float(h)
min_size = min(hf, wf)
coef = torch.ones(1, 1, 2, 3).to(LAF.dtype).to(LAF.device) / min_size
coef[0, 0, 0, 2] = 1.0 / wf
coef[0, 0, 1, 2] = 1.0 / hf
return coef.expand_as(LAF) * LAF
def generate_patch_grid_from_normalized_LAF(img: Tensor, LAF: Tensor, PS: int = 32) -> Tensor:
"""Helper function for affine grid generation.
Args:
img: image tensor of shape :math:`(B, CH, H, W)`.
LAF: laf with shape :math:`(B, N, 2, 3)`.
PS: patch size to be extracted.
Returns:
grid
"""
KORNIA_CHECK_LAF(LAF)
B, N, _, _ = LAF.size()
_, ch, h, w = img.size()
# norm, then renorm is needed for allowing detection on one resolution
# and extraction at arbitrary other
LAF_renorm = denormalize_laf(LAF, img)
grid = F.affine_grid(LAF_renorm.view(B * N, 2, 3), [B * N, ch, PS, PS], align_corners=False)
grid[..., :, 0] = 2.0 * grid[..., :, 0].clone() / float(w) - 1.0
grid[..., :, 1] = 2.0 * grid[..., :, 1].clone() / float(h) - 1.0
return grid
[docs]def laf_is_inside_image(laf: Tensor, images: Tensor, border: int = 0) -> Tensor:
"""Check if the LAF is touching or partly outside the image boundary.
Returns the mask of LAFs, which are fully inside the image, i.e. valid.
Args:
laf: :math:`(B, N, 2, 3)`.
images: images, lafs are detected in :math:`(B, CH, H, W)`.
border: additional border.
Returns:
mask with shape :math:`(B, N)`.
"""
KORNIA_CHECK_LAF(laf)
_, _, h, w = images.size()
pts = laf_to_boundary_points(laf, 12)
good_lafs_mask = (
(pts[..., 0] >= border) * (pts[..., 0] <= w - border) * (pts[..., 1] >= border) * (pts[..., 1] <= h - border)
)
good_lafs_mask = good_lafs_mask.min(dim=2)[0]
return good_lafs_mask
[docs]def laf_to_three_points(laf: Tensor):
"""Convert local affine frame(LAF) to alternative representation: coordinates of LAF center, LAF-x unit vector,
LAF-y unit vector.
Args:
laf: :math:`(B, N, 2, 3)`.
Returns:
threepts :math:`(B, N, 2, 3)`.
"""
KORNIA_CHECK_LAF(laf)
three_pts = stack([laf[..., 2] + laf[..., 0], laf[..., 2] + laf[..., 1], laf[..., 2]], dim=-1)
return three_pts
[docs]def laf_from_three_points(threepts: Tensor):
"""Convert three points to local affine frame.
Order is (0,0), (0, 1), (1, 0).
Args:
threepts: :math:`(B, N, 2, 3)`.
Returns:
laf :math:`(B, N, 2, 3)`.
"""
laf = stack([threepts[..., 0] - threepts[..., 2], threepts[..., 1] - threepts[..., 2], threepts[..., 2]], dim=-1)
return laf