Source code for pymatgen.entries.computed_entries

# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.

"""
This module implements equivalents of the basic ComputedEntry objects, which
is the basic entity that can be used to perform many analyses. ComputedEntries
contain calculated information, typically from VASP or other electronic
structure codes. For example, ComputedEntries can be used as inputs for phase
diagram analysis.
"""

import abc
import json
import os
import warnings
from itertools import combinations
from typing import List

import numpy as np
from monty.json import MontyDecoder, MontyEncoder, MSONable
from scipy.interpolate import interp1d
from uncertainties import ufloat

from pymatgen.core.composition import Composition
from pymatgen.core.structure import Structure
from pymatgen.entries import Entry

__author__ = "Ryan Kingsbury, Matt McDermott, Shyue Ping Ong, Anubhav Jain"
__copyright__ = "Copyright 2011-2020, The Materials Project"
__version__ = "1.1"
__date__ = "April 2020"

with open(os.path.join(os.path.dirname(__file__), "data/g_els.json")) as f:
    G_ELEMS = json.load(f)
with open(os.path.join(os.path.dirname(__file__), "data/nist_gas_gf.json")) as f:
    G_GASES = json.load(f)


[docs]class EnergyAdjustment(MSONable): """ Lightweight class to contain information about an energy adjustment or energy correction. """ def __init__( self, value, uncertainty=np.nan, name="Manual adjustment", cls=None, description="", ): """ Args: value: float, value of the energy adjustment in eV uncertainty: float, uncertainty of the energy adjustment in eV. Default: np.nan name: str, human-readable name of the energy adjustment. (Default: Manual adjustment) cls: dict, Serialized Compatibility class used to generate the energy adjustment. (Default: None) description: str, human-readable explanation of the energy adjustment. """ self.name = name self.cls = cls if cls else {} self.description = description self._value = value self._uncertainty = uncertainty @property def value(self): """ Return the value of the energy correction in eV. """ return self._value @property def uncertainty(self): """ Return the uncertainty in the value of the energy adjustment in eV """ return self._uncertainty
[docs] @abc.abstractmethod def normalize(self, factor): """ Scale the value of the current energy adjustment by factor in-place. This method is utilized in ComputedEntry.normalize() to scale the energies to a formula unit basis (e.g. E_Fe6O9 = 3 x E_Fe2O3). """
@property @abc.abstractmethod def explain(self): """ Return an explanaion of how the energy adjustment is calculated. """ def __repr__(self): output = [ "{}:".format(self.__class__.__name__), " Name: {}".format(self.name), " Value: {:.3f} eV".format(self.value), " Uncertainty: {:.3f} eV".format(self.uncertainty), " Description: {}".format(self.explain), " Generated by: {}".format(self.cls.get("@class", None)), ] return "\n".join(output)
[docs]class ConstantEnergyAdjustment(EnergyAdjustment): """ A constant energy adjustment applied to a ComputedEntry. Useful in energy referencing schemes such as the Aqueous energy referencing scheme. """ def __init__( self, value, uncertainty=np.nan, name="Constant energy adjustment", cls=None, description="Constant energy adjustment", ): """ Args: value: float, value of the energy adjustment in eV uncertainty: float, uncertaint of the energy adjustment in eV. (Default: np.nan) name: str, human-readable name of the energy adjustment. (Default: Constant energy adjustment) cls: dict, Serialized Compatibility class used to generate the energy adjustment. (Default: None) description: str, human-readable explanation of the energy adjustment. """ super().__init__(value, uncertainty, name=name, cls=cls, description=description) self._value = value self._uncertainty = uncertainty @property def explain(self): """ Return an explanaion of how the energy adjustment is calculated. """ return self.description + " ({:.3f} eV)".format(self.value)
[docs] def normalize(self, factor): """ Normalize energy adjustment (in place), dividing value/uncertainty by a factor. :param factor: factor to divide by """ self._value /= factor self._uncertainty /= factor
[docs]class ManualEnergyAdjustment(ConstantEnergyAdjustment): """ A manual energy adjustment applied to a ComputedEntry. """ def __init__(self, value): """ Args: value: float, value of the energy adjustment in eV """ name = "Manual energy adjustment" description = "Manual energy adjustment" super().__init__(value, name=name, cls=None, description=description)
[docs]class CompositionEnergyAdjustment(EnergyAdjustment): """ An energy adjustment applied to a ComputedEntry based on the atomic composition. Used in various DFT energy correction schemes. """ def __init__( self, adj_per_atom, n_atoms, uncertainty_per_atom=np.nan, name="", cls=None, description="Composition-based energy adjustment", ): """ Args: adj_per_atom: float, energy adjustment to apply per atom, in eV/atom n_atoms: float or int, number of atoms. uncertainty_per_atom: float, uncertainty in energy adjustment to apply per atom, in eV/atom. (Default: np.nan) name: str, human-readable name of the energy adjustment. (Default: "") cls: dict, Serialized Compatibility class used to generate the energy adjustment. (Default: None) description: str, human-readable explanation of the energy adjustment. """ self._adj_per_atom = adj_per_atom self.uncertainty_per_atom = uncertainty_per_atom self.n_atoms = n_atoms self.cls = cls if cls else {} self.name = name self.description = description @property def value(self): """ Return the value of the energy adjustment in eV. """ return self._adj_per_atom * self.n_atoms @property def uncertainty(self): """ Return the value of the energy adjustment in eV. """ return self.uncertainty_per_atom * self.n_atoms @property def explain(self): """ Return an explanaion of how the energy adjustment is calculated. """ return self.description + " ({:.3f} eV/atom x {} atoms)".format(self._adj_per_atom, self.n_atoms)
[docs] def normalize(self, factor): """ Normalize energy adjustment (in place), dividing value/uncertainty by a factor. :param factor: factor to divide by """ self.n_atoms /= factor
[docs]class TemperatureEnergyAdjustment(EnergyAdjustment): """ An energy adjustment applied to a ComputedEntry based on the temperature. Used, for example, to add entropy to DFT energies. """ def __init__( self, adj_per_deg, temp, n_atoms, uncertainty_per_deg=np.nan, name="", cls=None, description="Temperature-based energy adjustment", ): """ Args: adj_per_deg: float, energy adjustment to apply per degree K, in eV/atom temp: float, temperature in Kelvin n_atoms: float or int, number of atoms uncertainty_per_deg: float, uncertainty in energy adjustment to apply per degree K, in eV/atom. (Default: np.nan) name: str, human-readable name of the energy adjustment. (Default: "") cls: dict, Serialized Compatibility class used to generate the energy adjustment. (Default: None) description: str, human-readable explanation of the energy adjustment. """ self._adj_per_deg = adj_per_deg self.uncertainty_per_deg = uncertainty_per_deg self.temp = temp self.n_atoms = n_atoms self.name = name self.cls = cls if cls else {} self.description = description @property def value(self): """ Return the value of the energy correction in eV. """ return self._adj_per_deg * self.temp * self.n_atoms @property def uncertainty(self): """ Return the value of the energy adjustment in eV. """ return self.uncertainty_per_deg * self.temp * self.n_atoms @property def explain(self): """ Return an explanaion of how the energy adjustment is calculated. """ return self.description + " ({:.4f} eV/K/atom x {} K x {} atoms)".format( self._adj_per_deg, self.temp, self.n_atoms )
[docs] def normalize(self, factor): """ Normalize energy adjustment (in place), dividing value/uncertainty by a factor. :param factor: factor to divide by """ self.n_atoms /= factor
[docs]class ComputedEntry(Entry): """ Lightweight Entry object for computed data. Contains facilities for applying corrections to the .energy attribute and for storing calculation parameters. """ def __init__( self, composition: Composition, energy: float, correction: float = 0.0, energy_adjustments: list = None, parameters: dict = None, data: dict = None, entry_id: object = None, ): """ Initializes a ComputedEntry. Args: composition (Composition): Composition of the entry. For flexibility, this can take the form of all the typical input taken by a Composition, including a {symbol: amt} dict, a string formula, and others. energy (float): Energy of the entry. Usually the final calculated energy from VASP or other electronic structure codes. correction (float): Manually set an energy correction, will ignore energy_adjustments if specified. energy_adjustments: An optional list of EnergyAdjustment to be applied to the energy. This is used to modify the energy for certain analyses. Defaults to None. parameters: An optional dict of parameters associated with the entry. Defaults to None. data: An optional dict of any additional data associated with the entry. Defaults to None. entry_id: An optional id to uniquely identify the entry. """ super().__init__(composition, energy) self.energy_adjustments = energy_adjustments if energy_adjustments else [] if correction != 0.0: if energy_adjustments: raise ValueError( "Argument conflict! Setting correction = {:.3f} conflicts " "with setting energy_adjustments. Specify one or the " "other.".format(correction) ) self.correction = correction self.parameters = parameters if parameters else {} self.data = data if data else {} self.entry_id = entry_id self.name = self.composition.reduced_formula @property def uncorrected_energy(self) -> float: """ Returns: float: the *uncorrected* energy of the entry """ return self._energy @property def energy(self) -> float: """ :return: the *corrected* energy of the entry. """ return self.uncorrected_energy + self.correction @property def uncorrected_energy_per_atom(self) -> float: """ Returns: float: the *uncorrected* energy of the entry, normalized by atoms (units of eV/atom) """ return self.uncorrected_energy / self.composition.num_atoms @property def correction(self) -> float: """ Returns: float: the total energy correction / adjustment applied to the entry, in eV. """ # adds to ufloat(0.0, 0.0) to ensure that no corrections still result in ufloat object corr = ufloat(0.0, 0.0) + sum([ufloat(ea.value, ea.uncertainty) for ea in self.energy_adjustments]) return corr.nominal_value @correction.setter def correction(self, x: float) -> None: corr = ManualEnergyAdjustment(x) self.energy_adjustments = [corr] @property def correction_per_atom(self) -> float: """ Returns: float: the total energy correction / adjustment applied to the entry, normalized by atoms (units of eV/atom) """ return self.correction / self.composition.num_atoms @property def correction_uncertainty(self) -> float: """ Returns: float: the uncertainty of the energy adjustments applied to the entry, in eV """ # adds to ufloat(0.0, 0.0) to ensure that no corrections still result in ufloat object unc = ufloat(0.0, 0.0) + sum( [ ufloat(ea.value, ea.uncertainty) if not np.isnan(ea.uncertainty) else ufloat(ea.value, 0) for ea in self.energy_adjustments ] ) if unc.nominal_value != 0 and unc.std_dev == 0: return np.nan return unc.std_dev @property def correction_uncertainty_per_atom(self) -> float: """ Returns: float: the uncertainty of the energy adjustments applied to the entry, normalized by atoms (units of eV/atom) """ return self.correction_uncertainty / self.composition.num_atoms
[docs] def normalize(self, mode: str = "formula_unit") -> "ComputedEntry": """ Normalize the entry's composition and energy. Args: mode: "formula_unit" is the default, which normalizes to composition.reduced_formula. The other option is "atom", which normalizes such that the composition amounts sum to 1. """ factor = self._normalization_factor(mode) new_composition = self._composition / factor new_energy = self._energy / factor new_entry_dict = self.as_dict() new_entry_dict["composition"] = new_composition.as_dict() new_entry_dict["energy"] = new_energy # TODO: make sure EnergyAdjustments are _also_ immutable to avoid this hacking new_energy_adjustments = MontyDecoder().process_decoded(new_entry_dict["energy_adjustments"]) for ea in new_energy_adjustments: ea.normalize(factor) new_entry_dict["energy_adjustments"] = [ea.as_dict() for ea in new_energy_adjustments] return self.from_dict(new_entry_dict)
def __repr__(self) -> str: n_atoms = self.composition.num_atoms output = [ "{} {:<10} - {:<12} ({})".format( self.entry_id, self.__class__.__name__, self.composition.formula, self.composition.reduced_formula, ), "{:<24} = {:<9.4f} eV ({:<8.4f} eV/atom)".format( "Energy (Uncorrected)", self._energy, self._energy / n_atoms ), "{:<24} = {:<9.4f} eV ({:<8.4f} eV/atom)".format("Correction", self.correction, self.correction / n_atoms), "{:<24} = {:<9.4f} eV ({:<8.4f} eV/atom)".format("Energy (Final)", self.energy, self.energy_per_atom), "Energy Adjustments:", ] if len(self.energy_adjustments) == 0: output.append(" None") else: for e in self.energy_adjustments: output.append(" {:<23}: {:<9.4f} eV ({:<8.4f} eV/atom)".format(e.name, e.value, e.value / n_atoms)) output.append("Parameters:") for k, v in self.parameters.items(): output.append(" {:<22} = {}".format(k, v)) output.append("Data:") for k, v in self.data.items(): output.append(" {:<22} = {}".format(k, v)) return "\n".join(output) def __str__(self): return self.__repr__() def __eq__(self, other): # NOTE: Scaled duplicates i.e. physically equivalent materials # are not equal unless normalized separately. if self is other: return True # Equality is defined based on composition and energy # If structures are involved, it is assumed that a {composition, energy} is # vanishingly unlikely to be the same if the structures are different if not np.allclose(self.energy, other.energy): return False # if entry_ids are equivalent, skip the more expensive composition check if self.entry_id and other.entry_id and self.entry_id == other.entry_id: return True if self.composition != other.composition: return False # assumes that data, parameters, corrections are equivalent return True
[docs] @classmethod def from_dict(cls, d) -> "ComputedEntry": """ :param d: Dict representation. :return: ComputedEntry """ dec = MontyDecoder() # the first block here is for legacy ComputedEntry that were # serialized before we had the energy_adjustments attribute. if d["correction"] != 0 and not d.get("energy_adjustments"): return cls( d["composition"], d["energy"], d["correction"], parameters={k: dec.process_decoded(v) for k, v in d.get("parameters", {}).items()}, data={k: dec.process_decoded(v) for k, v in d.get("data", {}).items()}, entry_id=d.get("entry_id", None), ) # this is the preferred / modern way of instantiating ComputedEntry # we don't pass correction explicitly because it will be calculated # on the fly from energy_adjustments return cls( d["composition"], d["energy"], correction=0, energy_adjustments=[dec.process_decoded(e) for e in d.get("energy_adjustments", {})], parameters={k: dec.process_decoded(v) for k, v in d.get("parameters", {}).items()}, data={k: dec.process_decoded(v) for k, v in d.get("data", {}).items()}, entry_id=d.get("entry_id", None), )
[docs] def as_dict(self) -> dict: """ :return: MSONable dict. """ return_dict = super().as_dict() return_dict.update( { "entry_id": self.entry_id, "correction": self.correction, "energy_adjustments": json.loads(json.dumps(self.energy_adjustments, cls=MontyEncoder)), "parameters": json.loads(json.dumps(self.parameters, cls=MontyEncoder)), "data": json.loads(json.dumps(self.data, cls=MontyEncoder)), } ) return return_dict
def __hash__(self) -> int: # NOTE It is assumed that the user will ensure entry_id is a # unique identifier for ComputedEntry type classes. if self.entry_id is not None: return hash(f"{self.__class__.__name__}{self.entry_id}") return super().__hash__()
[docs]class ComputedStructureEntry(ComputedEntry): """ A heavier version of ComputedEntry which contains a structure as well. The structure is needed for some analyses. """ def __init__( self, structure: Structure, energy: float, correction: float = 0.0, composition: Composition = None, energy_adjustments: list = None, parameters: dict = None, data: dict = None, entry_id: object = None, ): """ Initializes a ComputedStructureEntry. Args: structure (Structure): The actual structure of an entry. energy (float): Energy of the entry. Usually the final calculated energy from VASP or other electronic structure codes. energy_adjustments: An optional list of EnergyAdjustment to be applied to the energy. This is used to modify the energy for certain analyses. Defaults to None. parameters: An optional dict of parameters associated with the entry. Defaults to None. data: An optional dict of any additional data associated with the entry. Defaults to None. entry_id: An optional id to uniquely identify the entry. """ if composition: composition = Composition(composition) if ( composition.get_integer_formula_and_factor()[0] != structure.composition.get_integer_formula_and_factor()[0] ): raise ValueError("Mismatching composition provided.") else: composition = structure.composition super().__init__( composition, energy, correction=correction, energy_adjustments=energy_adjustments, parameters=parameters, data=data, entry_id=entry_id, ) self._structure = structure @property def structure(self) -> Structure: """ :return: the structure of the entry. """ return self._structure
[docs] def as_dict(self) -> dict: """ :return: MSONAble dict. """ d = super().as_dict() d["structure"] = self.structure.as_dict() return d
[docs] @classmethod def from_dict(cls, d) -> "ComputedStructureEntry": """ :param d: Dict representation. :return: ComputedStructureEntry """ dec = MontyDecoder() # the first block here is for legacy ComputedEntry that were # serialized before we had the energy_adjustments attribute. if d["correction"] != 0 and not d.get("energy_adjustments"): struct = dec.process_decoded(d["structure"]) return cls( struct, d["energy"], correction=d["correction"], parameters={k: dec.process_decoded(v) for k, v in d.get("parameters", {}).items()}, data={k: dec.process_decoded(v) for k, v in d.get("data", {}).items()}, entry_id=d.get("entry_id", None), ) # this is the preferred / modern way of instantiating ComputedEntry # we don't pass correction explicitly because it will be calculated # on the fly from energy_adjustments return cls( dec.process_decoded(d["structure"]), d["energy"], composition=d.get("composition", None), correction=0, energy_adjustments=[dec.process_decoded(e) for e in d.get("energy_adjustments", {})], parameters={k: dec.process_decoded(v) for k, v in d.get("parameters", {}).items()}, data={k: dec.process_decoded(v) for k, v in d.get("data", {}).items()}, entry_id=d.get("entry_id", None), )
[docs] def normalize(self, mode: str = "formula_unit") -> "ComputedStructureEntry": """ Normalize the entry's composition and energy. The structure remains unchanged. Args: mode: "formula_unit" is the default, which normalizes to composition.reduced_formula. The other option is "atom", which normalizes such that the composition amounts sum to 1. """ # TODO this should raise TypeError # raise TypeError("You cannot normalize a structure.") warnings.warn( ( f"Normalization of a `{self.__class__.__name__}` makes " "`self.composition` and `self.structure.composition` inconsistent" " - please use self.composition for all further calculations." ) ) # TODO: find a better solution for creating copies instead of as/from dict factor = self._normalization_factor(mode) d = super().normalize(mode).as_dict() d["structure"] = self.structure.as_dict() entry = self.from_dict(d) entry._composition /= factor return entry
[docs]class GibbsComputedStructureEntry(ComputedStructureEntry): """ An extension to ComputedStructureEntry which includes the estimated Gibbs free energy of formation via a machine-learned model. """ def __init__( self, structure: Structure, formation_enthalpy_per_atom: float, temp: float = 300, gibbs_model: str = "SISSO", composition: Composition = None, correction: float = 0.0, energy_adjustments: list = None, parameters: dict = None, data: dict = None, entry_id: object = None, ): """ Args: structure (Structure): The pymatgen Structure object of an entry. formation_enthalpy_per_atom (float): Formation enthalpy of the entry; must be calculated using phase diagram construction (eV) temp (float): Temperature in Kelvin. If temperature is not selected from one of [300, 400, 500, ... 2000 K], then free energies will be interpolated. Defaults to 300 K. gibbs_model (str): Model for Gibbs Free energy. Currently the default (and only supported) option is "SISSO", the descriptor created by Bartel et al. (2018) -- see reference in documentation. correction (float): A correction to be applied to the energy. Defaults to 0 parameters (dict): An optional dict of parameters associated with the entry. Defaults to None. data (dict): An optional dict of any additional data associated with the entry. Defaults to None. entry_id: An optional id to uniquely identify the entry. """ if temp < 300 or temp > 2000: raise ValueError("Temperature must be selected from range: [300, 2000] K.") integer_formula, _ = structure.composition.get_integer_formula_and_factor() self.experimental = False if integer_formula in G_GASES.keys(): self.experimental = True if "Experimental" not in str(entry_id): entry_id = f"{entry_id} (Experimental)" super().__init__( structure, energy=0, # placeholder, energy reassigned at end of __init__ composition=composition, correction=correction, energy_adjustments=energy_adjustments, parameters=parameters, data=data, entry_id=entry_id, ) self.temp = temp self.gibbs_model = gibbs_model self.formation_enthalpy_per_atom = formation_enthalpy_per_atom self.interpolated = False if self.temp % 100: self.interpolated = True if gibbs_model.lower() == "sisso": self.gibbs_fn = self.gf_sisso else: raise ValueError(f"{gibbs_model} not a valid model. The only currently " f"available model is 'SISSO'.") self._energy = self.gibbs_fn()
[docs] def gf_sisso(self) -> float: """ Gibbs Free Energy of formation as calculated by SISSO descriptor from Bartel et al. (2018). Units: eV (not normalized) WARNING: This descriptor only applies to solids. The implementation here attempts to detect and use downloaded NIST-JANAF data for common experimental gases (e.g. CO2) where possible. Note that experimental data is only for Gibbs Free Energy of formation, so expt. entries will register as having a formation enthalpy of 0. Reference: Bartel, C. J., Millican, S. L., Deml, A. M., Rumptz, J. R., Tumas, W., Weimer, A. W., … Holder, A. M. (2018). Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nature Communications, 9(1), 4168. https://doi.org/10.1038/s41467-018-06682-4 Returns: float: the difference between formation enthalpy (T=0 K, Materials Project) and the predicted Gibbs free energy of formation (eV) """ comp = self.composition if comp.is_element: return 0 integer_formula, factor = comp.get_integer_formula_and_factor() if self.experimental: data = G_GASES[integer_formula] if self.interpolated: g_interp = interp1d([int(t) for t in data.keys()], list(data.values())) energy = g_interp(self.temp) else: energy = data[str(self.temp)] gibbs_energy = energy * factor else: num_atoms = self.structure.num_sites vol_per_atom = self.structure.volume / num_atoms reduced_mass = self._reduced_mass(self.structure) gibbs_energy = ( comp.num_atoms * (self.formation_enthalpy_per_atom + self._g_delta_sisso(vol_per_atom, reduced_mass, self.temp)) - self._sum_g_i() ) return gibbs_energy
def _sum_g_i(self) -> float: """ Sum of the stoichiometrically weighted chemical potentials of the elements at specified temperature, as acquired from "g_els.json". Returns: float: sum of weighted chemical potentials [eV] """ elems = self.composition.get_el_amt_dict() if self.interpolated: sum_g_i = 0 for elem, amt in elems.items(): g_interp = interp1d( [float(t) for t in G_ELEMS.keys()], [g_dict[elem] for g_dict in G_ELEMS.values()], ) sum_g_i += amt * g_interp(self.temp) else: sum_g_i = sum([amt * G_ELEMS[str(self.temp)][elem] for elem, amt in elems.items()]) return sum_g_i @staticmethod def _reduced_mass(structure) -> float: """ Reduced mass as calculated via Eq. 6 in Bartel et al. (2018) Args: structure (Structure): The pymatgen Structure object of the entry. Returns: float: reduced mass (amu) """ reduced_comp = structure.composition.reduced_composition num_elems = len(reduced_comp.elements) elem_dict = reduced_comp.get_el_amt_dict() denominator = (num_elems - 1) * reduced_comp.num_atoms all_pairs = combinations(elem_dict.items(), 2) mass_sum = 0 for pair in all_pairs: m_i = Composition(pair[0][0]).weight m_j = Composition(pair[1][0]).weight alpha_i = pair[0][1] alpha_j = pair[1][1] mass_sum += (alpha_i + alpha_j) * (m_i * m_j) / (m_i + m_j) # type: ignore reduced_mass = (1 / denominator) * mass_sum return reduced_mass @staticmethod def _g_delta_sisso(vol_per_atom, reduced_mass, temp) -> float: """ G^delta as predicted by SISSO-learned descriptor from Eq. (4) in Bartel et al. (2018). Args: vol_per_atom (float): volume per atom [Å^3/atom] reduced_mass (float) - reduced mass as calculated with pair-wise sum formula [amu] temp (float) - Temperature [K] Returns: float: G^delta [eV/atom] """ return ( (-2.48e-4 * np.log(vol_per_atom) - 8.94e-5 * reduced_mass / vol_per_atom) * temp + 0.181 * np.log(temp) - 0.882 )
[docs] @classmethod def from_pd(cls, pd, temp=300, gibbs_model="SISSO") -> List["GibbsComputedStructureEntry"]: """ Constructor method for initializing a list of GibbsComputedStructureEntry objects from an existing T = 0 K phase diagram composed of ComputedStructureEntry objects, as acquired from a thermochemical database; (e.g.. The Materials Project) Args: pd (PhaseDiagram): T = 0 K phase diagram as created in pymatgen. Must contain ComputedStructureEntry objects. temp (int): Temperature [K] for estimating Gibbs free energy of formation. gibbs_model (str): Gibbs model to use; currently the only option is "SISSO". Returns: [GibbsComputedStructureEntry]: list of new entries which replace the orig. entries with inclusion of Gibbs free energy of formation at the specified temperature. """ gibbs_entries = [] for entry in pd.all_entries: if entry in pd.el_refs.values() or not entry.composition.is_element: gibbs_entries.append( cls( entry.structure, formation_enthalpy_per_atom=pd.get_form_energy_per_atom(entry), temp=temp, correction=0, gibbs_model=gibbs_model, data=entry.data, entry_id=entry.entry_id, ) ) return gibbs_entries
[docs] @classmethod def from_entries(cls, entries, temp=300, gibbs_model="SISSO") -> List["GibbsComputedStructureEntry"]: """ Constructor method for initializing GibbsComputedStructureEntry objects from T = 0 K ComputedStructureEntry objects, as acquired from a thermochemical database e.g. The Materials Project. Args: entries ([ComputedStructureEntry]): List of ComputedStructureEntry objects, as downloaded from The Materials Project API. temp (int): Temperature [K] for estimating Gibbs free energy of formation. gibbs_model (str): Gibbs model to use; currently the only option is "SISSO". Returns: [GibbsComputedStructureEntry]: list of new entries which replace the orig. entries with inclusion of Gibbs free energy of formation at the specified temperature. """ from pymatgen.analysis.phase_diagram import PhaseDiagram pd = PhaseDiagram(entries) return cls.from_pd(pd, temp, gibbs_model)
[docs] def as_dict(self) -> dict: """ :return: MSONAble dict. """ d = super().as_dict() d["formation_enthalpy_per_atom"] = self.formation_enthalpy_per_atom d["temp"] = self.temp d["gibbs_model"] = self.gibbs_model d["interpolated"] = self.interpolated return d
[docs] @classmethod def from_dict(cls, d) -> "GibbsComputedStructureEntry": """ :param d: Dict representation. :return: GibbsComputedStructureEntry """ dec = MontyDecoder() return cls( dec.process_decoded(d["structure"]), d["formation_enthalpy_per_atom"], d["temp"], d["gibbs_model"], composition=d.get("composition", None), correction=d["correction"], energy_adjustments=[dec.process_decoded(e) for e in d.get("energy_adjustments", {})], parameters={k: dec.process_decoded(v) for k, v in d.get("parameters", {}).items()}, data={k: dec.process_decoded(v) for k, v in d.get("data", {}).items()}, entry_id=d.get("entry_id", None), )
def __repr__(self): output = [ "GibbsComputedStructureEntry {} - {}".format(self.entry_id, self.composition.formula), "Gibbs Free Energy (Formation) = {:.4f}".format(self.energy), ] return "\n".join(output)