BucketedRandomProjectionLSH

class pyspark.ml.feature.BucketedRandomProjectionLSH(inputCol=None, outputCol=None, seed=None, numHashTables=1, bucketLength=None)[source]

LSH class for Euclidean distance metrics. The input is dense or sparse vectors, each of which represents a point in the Euclidean distance space. The output will be vectors of configurable dimension. Hash values in the same dimension are calculated by the same hash function.

>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.sql.functions import col
>>> data = [(0, Vectors.dense([-1.0, -1.0 ]),),
...         (1, Vectors.dense([-1.0, 1.0 ]),),
...         (2, Vectors.dense([1.0, -1.0 ]),),
...         (3, Vectors.dense([1.0, 1.0]),)]
>>> df = spark.createDataFrame(data, ["id", "features"])
>>> brp = BucketedRandomProjectionLSH()
>>> brp.setInputCol("features")
BucketedRandomProjectionLSH...
>>> brp.setOutputCol("hashes")
BucketedRandomProjectionLSH...
>>> brp.setSeed(12345)
BucketedRandomProjectionLSH...
>>> brp.setBucketLength(1.0)
BucketedRandomProjectionLSH...
>>> model = brp.fit(df)
>>> model.getBucketLength()
1.0
>>> model.setOutputCol("hashes")
BucketedRandomProjectionLSHModel...
>>> model.transform(df).head()
Row(id=0, features=DenseVector([-1.0, -1.0]), hashes=[DenseVector([-1.0])])
>>> data2 = [(4, Vectors.dense([2.0, 2.0 ]),),
...          (5, Vectors.dense([2.0, 3.0 ]),),
...          (6, Vectors.dense([3.0, 2.0 ]),),
...          (7, Vectors.dense([3.0, 3.0]),)]
>>> df2 = spark.createDataFrame(data2, ["id", "features"])
>>> model.approxNearestNeighbors(df2, Vectors.dense([1.0, 2.0]), 1).collect()
[Row(id=4, features=DenseVector([2.0, 2.0]), hashes=[DenseVector([1.0])], distCol=1.0)]
>>> model.approxSimilarityJoin(df, df2, 3.0, distCol="EuclideanDistance").select(
...     col("datasetA.id").alias("idA"),
...     col("datasetB.id").alias("idB"),
...     col("EuclideanDistance")).show()
+---+---+-----------------+
|idA|idB|EuclideanDistance|
+---+---+-----------------+
|  3|  6| 2.23606797749979|
+---+---+-----------------+
...
>>> model.approxSimilarityJoin(df, df2, 3, distCol="EuclideanDistance").select(
...     col("datasetA.id").alias("idA"),
...     col("datasetB.id").alias("idB"),
...     col("EuclideanDistance")).show()
+---+---+-----------------+
|idA|idB|EuclideanDistance|
+---+---+-----------------+
|  3|  6| 2.23606797749979|
+---+---+-----------------+
...
>>> brpPath = temp_path + "/brp"
>>> brp.save(brpPath)
>>> brp2 = BucketedRandomProjectionLSH.load(brpPath)
>>> brp2.getBucketLength() == brp.getBucketLength()
True
>>> modelPath = temp_path + "/brp-model"
>>> model.save(modelPath)
>>> model2 = BucketedRandomProjectionLSHModel.load(modelPath)
>>> model.transform(df).head().hashes == model2.transform(df).head().hashes
True

New in version 2.2.0.

Methods

Attributes

Methods Documentation

clear(param)

Clears a param from the param map if it has been explicitly set.

copy(extra=None)

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters

extra – Extra parameters to copy to the new instance

Returns

Copy of this instance

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra=None)

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters

extra – extra param values

Returns

merged param map

fit(dataset, params=None)

Fits a model to the input dataset with optional parameters.

Parameters
  • dataset – input dataset, which is an instance of pyspark.sql.DataFrame

  • params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.

Returns

fitted model(s)

New in version 1.3.0.

fitMultiple(dataset, paramMaps)

Fits a model to the input dataset for each param map in paramMaps.

Parameters
  • dataset – input dataset, which is an instance of pyspark.sql.DataFrame.

  • paramMaps – A Sequence of param maps.

Returns

A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.

New in version 2.3.0.

getBucketLength()

Gets the value of bucketLength or its default value.

New in version 2.2.0.

getInputCol()

Gets the value of inputCol or its default value.

getNumHashTables()

Gets the value of numHashTables or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getOutputCol()

Gets the value of outputCol or its default value.

getParam(paramName)

Gets a param by its name.

getSeed()

Gets the value of seed or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

classmethod load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

classmethod read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setBucketLength(value)[source]

Sets the value of bucketLength.

New in version 2.2.0.

setInputCol(value)

Sets the value of inputCol.

setNumHashTables(value)

Sets the value of numHashTables.

setOutputCol(value)

Sets the value of outputCol.

setParams(self, inputCol=None, outputCol=None, seed=None, numHashTables=1, bucketLength=None)[source]

Sets params for this BucketedRandomProjectionLSH.

New in version 2.2.0.

setSeed(value)[source]

Sets the value of seed.

write()

Returns an MLWriter instance for this ML instance.

Attributes Documentation

bucketLength = Param(parent='undefined', name='bucketLength', doc='the length of each hash bucket, a larger bucket lowers the false negative rate.')
inputCol = Param(parent='undefined', name='inputCol', doc='input column name.')
numHashTables = Param(parent='undefined', name='numHashTables', doc='number of hash tables, where increasing number of hash tables lowers the false negative rate, and decreasing it improves the running performance.')
outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')
params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

seed = Param(parent='undefined', name='seed', doc='random seed.')