IsotonicRegressionModel¶
-
class
pyspark.ml.regression.
IsotonicRegressionModel
(java_model=None)[source]¶ Model fitted by
IsotonicRegression
.New in version 1.6.0.
Methods
Attributes
Methods Documentation
-
clear
(param)¶ Clears a param from the param map if it has been explicitly set.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
extra – Extra parameters to copy to the new instance
- Returns
Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
extra – extra param values
- Returns
merged param map
-
getFeatureIndex
()¶ Gets the value of featureIndex or its default value.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getIsotonic
()¶ Gets the value of isotonic or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam
(paramName)¶ Gets a param by its name.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getWeightCol
()¶ Gets the value of weightCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
-
classmethod
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
classmethod
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set
(param, value)¶ Sets a parameter in the embedded param map.
-
setFeatureIndex
(value)[source]¶ Sets the value of
featureIndex
.
-
setFeaturesCol
(value)[source]¶ Sets the value of
featuresCol
.New in version 3.0.0.
-
setPredictionCol
(value)[source]¶ Sets the value of
predictionCol
.New in version 3.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
- Parameters
dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
params – an optional param map that overrides embedded params.
- Returns
transformed dataset
New in version 1.3.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
boundaries
¶ Boundaries in increasing order for which predictions are known.
New in version 1.6.0.
-
featureIndex
= Param(parent='undefined', name='featureIndex', doc='The index of the feature if featuresCol is a vector column, no effect otherwise.')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
isotonic
= Param(parent='undefined', name='isotonic', doc='whether the output sequence should be isotonic/increasing (true) orantitonic/decreasing (false).')¶
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 3.0.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
predictions
¶ Predictions associated with the boundaries at the same index, monotone because of isotonic regression.
New in version 1.6.0.
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-