AFTSurvivalRegression¶
-
class
pyspark.ml.regression.
AFTSurvivalRegression
(featuresCol='features', labelCol='label', predictionCol='prediction', fitIntercept=True, maxIter=100, tol=1e-06, censorCol='censor', quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2)[source]¶ Accelerated Failure Time (AFT) Model Survival Regression
Fit a parametric AFT survival regression model based on the Weibull distribution of the survival time.
See also
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0), 1.0), ... (1e-40, Vectors.sparse(1, [], []), 0.0)], ["label", "features", "censor"]) >>> aftsr = AFTSurvivalRegression() >>> aftsr.setMaxIter(10) AFTSurvivalRegression... >>> aftsr.getMaxIter() 10 >>> aftsr.clear(aftsr.maxIter) >>> model = aftsr.fit(df) >>> model.setFeaturesCol("features") AFTSurvivalRegressionModel... >>> model.predict(Vectors.dense(6.3)) 1.0 >>> model.predictQuantiles(Vectors.dense(6.3)) DenseVector([0.0101, 0.0513, 0.1054, 0.2877, 0.6931, 1.3863, 2.3026, 2.9957, 4.6052]) >>> model.transform(df).show() +-------+---------+------+----------+ | label| features|censor|prediction| +-------+---------+------+----------+ | 1.0| [1.0]| 1.0| 1.0| |1.0E-40|(1,[],[])| 0.0| 1.0| +-------+---------+------+----------+ ... >>> aftsr_path = temp_path + "/aftsr" >>> aftsr.save(aftsr_path) >>> aftsr2 = AFTSurvivalRegression.load(aftsr_path) >>> aftsr2.getMaxIter() 100 >>> model_path = temp_path + "/aftsr_model" >>> model.save(model_path) >>> model2 = AFTSurvivalRegressionModel.load(model_path) >>> model.coefficients == model2.coefficients True >>> model.intercept == model2.intercept True >>> model.scale == model2.scale True
New in version 1.6.0.
Methods
Attributes
Methods Documentation
-
clear
(param)¶ Clears a param from the param map if it has been explicitly set.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
extra – Extra parameters to copy to the new instance
- Returns
Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
extra – extra param values
- Returns
merged param map
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
- Parameters
dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
- Returns
fitted model(s)
New in version 1.3.0.
-
fitMultiple
(dataset, paramMaps)¶ Fits a model to the input dataset for each param map in paramMaps.
- Parameters
dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
.paramMaps – A Sequence of param maps.
- Returns
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
New in version 2.3.0.
-
getAggregationDepth
()¶ Gets the value of aggregationDepth or its default value.
-
getCensorCol
()¶ Gets the value of censorCol or its default value.
New in version 1.6.0.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getFitIntercept
()¶ Gets the value of fitIntercept or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam
(paramName)¶ Gets a param by its name.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getQuantileProbabilities
()¶ Gets the value of quantileProbabilities or its default value.
New in version 1.6.0.
-
getQuantilesCol
()¶ Gets the value of quantilesCol or its default value.
New in version 1.6.0.
-
getTol
()¶ Gets the value of tol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
-
classmethod
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
classmethod
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set
(param, value)¶ Sets a parameter in the embedded param map.
-
setAggregationDepth
(value)[source]¶ Sets the value of
aggregationDepth
.New in version 2.1.0.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.New in version 3.0.0.
-
setFitIntercept
(value)[source]¶ Sets the value of
fitIntercept
.New in version 1.6.0.
-
setParams
(featuresCol='features', labelCol='label', predictionCol='prediction', fitIntercept=True, maxIter=100, tol=1e-06, censorCol='censor', quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2)[source]¶ setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, fitIntercept=True, maxIter=100, tol=1E-6, censorCol=”censor”, quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2):
New in version 1.6.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.New in version 3.0.0.
-
setQuantileProbabilities
(value)[source]¶ Sets the value of
quantileProbabilities
.New in version 1.6.0.
-
setQuantilesCol
(value)[source]¶ Sets the value of
quantilesCol
.New in version 1.6.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
aggregationDepth
= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
-
censorCol
= Param(parent='undefined', name='censorCol', doc='censor column name. The value of this column could be 0 or 1. If the value is 1, it means the event has occurred i.e. uncensored; otherwise censored.')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fitIntercept
= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
quantileProbabilities
= Param(parent='undefined', name='quantileProbabilities', doc='quantile probabilities array. Values of the quantile probabilities array should be in the range (0, 1) and the array should be non-empty.')¶
-
quantilesCol
= Param(parent='undefined', name='quantilesCol', doc='quantiles column name. This column will output quantiles of corresponding quantileProbabilities if it is set.')¶
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-