LDA¶
-
class
pyspark.mllib.clustering.
LDA
[source]¶ New in version 1.5.0.
Methods
Methods Documentation
-
classmethod
train
(rdd, k=10, maxIterations=20, docConcentration=- 1.0, topicConcentration=- 1.0, seed=None, checkpointInterval=10, optimizer='em')[source]¶ Train a LDA model.
- Parameters
rdd – RDD of documents, which are tuples of document IDs and term (word) count vectors. The term count vectors are “bags of words” with a fixed-size vocabulary (where the vocabulary size is the length of the vector). Document IDs must be unique and >= 0.
k – Number of topics to infer, i.e., the number of soft cluster centers. (default: 10)
maxIterations – Maximum number of iterations allowed. (default: 20)
docConcentration – Concentration parameter (commonly named “alpha”) for the prior placed on documents’ distributions over topics (“theta”). (default: -1.0)
topicConcentration – Concentration parameter (commonly named “beta” or “eta”) for the prior placed on topics’ distributions over terms. (default: -1.0)
seed – Random seed for cluster initialization. Set as None to generate seed based on system time. (default: None)
checkpointInterval – Period (in iterations) between checkpoints. (default: 10)
optimizer – LDAOptimizer used to perform the actual calculation. Currently “em”, “online” are supported. (default: “em”)
New in version 1.5.0.
-
classmethod