quimb.tensor.tensor_mera#
Functions
|
Classes
|
The Multi-scale Entanglement Renormalization Ansatz (MERA) state. |
- class quimb.tensor.tensor_mera.MERA(L, uni=None, iso=None, phys_dim=2, dangle=False, site_ind_id='k{}', site_tag_id='I{}', **tn_opts)[source]#
The Multi-scale Entanglement Renormalization Ansatz (MERA) state:
... ... ... ... ... ... | | | | | | | ISO ISO ISO ISO ISO ISO ISO : \ / \ / \ / \ / \ / \ / : '_LAYER1' UNI UNI UNI UNI UNI UNI : / \ / \ / \ / \ / \ / \ O ISO ISO ISO ISO ISO ISO ISO ISO ISO ISO ISO ISO I : | | | | | | | | | | | | | | | | | | | | | | | | | | : '_LAYER0' UNI UNI UNI UNI UNI UNI UNI UNI UNI UNI UNI UNI UNI : | | | | | | | | | | | | | | | | | | | | | | | | | | <-- phys_dim 0 1 2 3 4 .... ... L-2 L-1
- Parameters
L (int) – The number of phyiscal sites. Shoule be a power of 2.
uni (array or sequence of arrays of shape (d, d, d, d).) – The unitary operator(s). These will be cycled over and placed from bottom left to top right in diagram above.
iso (array or sequence of arrays of shape (d, d, d)) – The isometry operator(s). These will be cycled over and placed from bottom left to top right in diagram above.
phys_dim (int, optional) – The dimension of the local hilbert space.
dangle (bool, optional) – Whether to leave a dangling index on the final isometry, in order to maintain perfect scale invariance, else join the final unitaries just with an indentity.